BackgroundHyperbaric oxygen therapy (HBOT) is used to treat various wound types. However, the possible beneficial and harmful effects of HBOT for acute wounds are unclear.MethodsWe undertook a systematic review to evaluate the effectiveness of HBOT compared to other interventions on wound healing and adverse effects in patients with acute wounds. To detect all available randomized controlled trials (RCTs) we searched five relevant databases up to March 2010. Trial selection, quality assessment, data extraction, and data synthesis were conducted by two of the authors independently.ResultsWe included five trials, totaling 360 patients. These trials, with some methodologic flaws, included different kinds of wound and focused on different outcome parameters, which prohibited meta-analysis. A French trial (n = 36 patients) reported that significantly more crush wounds healed with HBOT than with sham HBOT [relative risk (RR) 1.70, 95% confidence interval (CI) 1.11–2.61]. Moreover, there were significantly fewer additional surgical procedures required with HBOT (RR 1.60, 95% CI 1.03–2.50), and there was significantly less tissue necrosis (RR 1.70, 95% CI 1.11–2.61). In one of two American trials (n = 141) burn wounds healed significantly quicker with HBOT (P < 0.005) than with routine burn care. A British trial (n = 48) compared HBOT with usual care. HBOT resulted in a significantly higher percentage of healthy graft area in split skin grafts (RR 3.50, 95% CI 1.35–9.11). In a Chinese trial (n = 145) HBOT did not significantly improve flap survival in patients with limb skin defects.ConclusionsHBOT, if readily available, appears effective for the management of acute, difficult to heal wounds.
DOCUMENT
The aim of this analysis was to compare ventilation management and outcomes in invasively ventilated patients with acute hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19) between the first and second wave in the Netherlands. This is a post hoc analysis of two nationwide observational COVID-19 studies conducted in quick succession. The primary endpoint was ventilation management. Secondary endpoints were tracheostomy use, duration of ventilation, intensive care unit (ICU) and hospital length of stay (LOS), and mortality. We used propensity score matching to control for observed confounding factors. This analysis included 1122 patients from the first and 568 patients from the second wave. Patients in the second wave were sicker, had more comorbidities, and had worse oxygenation parameters. They were ventilated with lower positive end-expiratory pressure and higher fraction inspired oxygen, had a lower oxygen saturation, received neuromuscular blockade more often, and were less often tracheostomized. Duration of ventilation was shorter, but mortality rates were similar. After matching, the fraction of inspired oxygen was lower in the second wave. In patients with acute hypoxemic respiratory failure due to COVID-19, aspects of respiratory care and outcomes rapidly changed over the successive waves.
DOCUMENT
Objective: We determined the prevalences of hyperoxemia and excessive oxygen use, and the epidemiology, ventilation characteristics and outcomes associated with hyperoxemia in invasively ventilated patients with coronavirus disease 2019 (COVID–19). Methods: Post hoc analysis of a national, multicentre, observational study in 22 ICUs. Patients were classified in the first two days of invasive ventilation as ‘hyperoxemic’ or ‘normoxemic’. The co–primary endpoints were prevalence of hyperoxemia (PaO2 > 90 mmHg) and prevalence of excessive oxygen use (FiO2 ≥ 60% while PaO2 > 90 mmHg or SpO2 > 92%). Secondary endpoints included ventilator settings and ventilation parameters, duration of ventilation, length of stay (LOS) in ICU and hospital, and mortality in ICU, hospital, and at day 28 and 90. We used propensity matching to control for observed confounding factors that may influence endpoints. Results: Of 851 COVID–19 patients, 225 (26.4%) were classified as hyperoxemic. Excessive oxygen use occurred in 385 (45.2%) patients. Acute respiratory distress syndrome (ARDS) severity was lowest in hyperoxemic patients. Hyperoxemic patients were ventilated with higher positive end–expiratory pressure (PEEP), while rescue therapies for hypoxemia were applied more often in normoxemic patients. Neither in the unmatched nor in the matched analysis were there differences between hyperoxemic and normoxemic patients with regard to any of the clinical outcomes. Conclusion: In this cohort of invasively ventilated COVID–19 patients, hyperoxemia occurred often and so did excessive oxygen use. The main differences between hyperoxemic and normoxemic patients were ARDS severity and use of PEEP. Clinical outcomes were not different between hyperoxemic and normoxemic patients.
DOCUMENT
Key summary points Aim To describe a guidance on the management of post-acute COVID 19 patients in geriatric rehabilitation. Findings This guidance addresses general requirements for post-acute COVID-19 geriatric rehabilitation and critical aspects for quality assurance during the COVID-19 pandemic. Furthermore, the guidance describes relevant care processes and procedures divided in five topics: patient selection; admission; treatment; discharge; and follow-up and monitoring. Message This guidance is designed to provide support to care professionals involved in the geriatric rehabilitation treatment of post-acute COVID-19 patients.
DOCUMENT
In patients with COPD, self-management skills are important to reduce the impact of exacerbations. However, both detection and adequate response to exacerbations appear to be difficult for some patients. Little is known about the underlying process of exacerbation-related self-management. Therefore, the objective of this study was to identify and explain the underlying process of exacerbation-related self-management behavior. A qualitative study using semi-structured in-depth interviews was performed according to the grounded theory approach, following a cyclic process in which data collection and data analysis alternated. Fifteen patients (male n=8; age range 59–88 years) with mild to very severe COPD were recruited from primary and secondary care settings in the Netherlands, in 2015.
DOCUMENT
Background: Post-term pregnancy, a pregnancy exceeding 294 days or 42 completed weeks, is associated with increased perinatal morbidity and mortality and is considered a high-risk condition which requires specialist surveillance and induction of labour. However, there is uncertainty on the policy concerning the timing of induction for post-term pregnancy or impending post-term pregnancy, leading to practice variation between caregivers. Previous studies on induction at or beyond 41 weeks versus expectant management showed different results on perinatal outcome though conclusions in meta-analyses show a preference for induction at 41 weeks. However, interpretation of the results is hampered by the limited sample size of most trials and the heterogeneity in design. Most control groups had a policy of awaiting spontaneous onset of labour that went far beyond 42 weeks, which does not reflect usual care in The Netherlands where induction of labour at 42 weeks is the regular policy. Thus leaving the question unanswered if induction at 41 weeks results in better perinatal outcomes than expectant management until 42 weeks. Methods/design: In this study we compare a policy of labour induction at 41 + 0/+1 weeks with a policy of expectant management until 42 weeks in obstetrical low risk women without contra-indications for expectant management until 42 weeks and a singleton pregnancy in cephalic position. We will perform a multicenter randomised controlled clinical trial. Our primary outcome will be a composite outcome of perinatal mortality and neonatal morbidity. Secondary outcomes will be maternal outcomes as mode of delivery (operative vaginal delivery and Caesarean section), need for analgesia and postpartum haemorrhage (≥1000 ml). Maternal preferences, satisfaction, wellbeing, pain and anxiety will be assessed alongside the trial. Discussion: his study will provide evidence for the management of pregnant women reaching a gestational age of 41 weeks.
MULTIFILE
This paper presents the results of an exercise to assess the effects of metaphors on knowledge management. Knowledge is an abstract phenomenon with no direct referent in the real world. To think and talk about knowledge we use conceptual metaphors. The exercise shows that these metaphors greatly influence the problems we identify related to knowledge in organizations and the type of knowledge management solutions we propose. The knowledge as water metaphor used in this exercise – which reflects the dominant way of thinking in Western knowledge management literature – leads to the thingification of knowledge, resulting in a discourse about ways to formalize, manage and control knowledge. This discourse primarily serves the interests of management. In contrast, the knowledge as love metaphor used in this exercise – which reflects more an Asian way of thinking about knowledge – shifts the discourse from the topic of knowledge as a thing to the underlying preconditions for good knowledge work. These conditions include the facilitation of knowledge professionals, the quality of the relationships in the organization, and the quality of the organizational culture. This discourse is aimed at humanizing the organization instead of formalizing it and is more in the interest of employees.
DOCUMENT
Objectives: To cross-validate the existing peak rate of oxygen consumption (VO2peak) prediction equations in Dutch law enforcement officers and to determine whether these prediction equations can be used to predict VO2peak for groups and in a single individual. A further objective was to report normative absolute and relative VO2peak values of a sample of law enforcement officers in the Netherlands. Material and Methods: The peak rate of oxygen consumption (ml×kg–1×min–1) was measured using a maximal incremental bicycle test in 1530 subjects, including 1068 male and 461 female police officers. Validity of the prediction equations for groups was assessed by comparing predicted VO2peak with measured VO2peak using paired t-tests. For individual differences limits of agreement (LoA) were calculated. Equations were considered valid for individuals when the difference between measured and predicted VO2peak did not exceed ±1 metabolic equivalent (MET) in 95% of individuals. Results: None of the equations met the validity criterion of 95% of individuals having ±1 MET difference or less than the measured value. Limits of agreement (LoAs) were large in all predictions. At the individual level, none of the equations were valid predictors of VO2peak (ml×kg–1×min–1). Normative values for Dutch law enforcement officers were presented. Conclusions: Substantial differences between measured and predicted VO2peak (ml×kg–1×min–1) were found. Most tested equations were invalid predictors of VO2peak at group level and all were invalid at individual levels.
DOCUMENT
From an evidence-based perspective, cardiopulmonary exercise testing (CPX) is a well-supported assessment technique in both the United States (US) and Europe. The combination of standard exercise testing (ET) (ie, progressive exercise provocation in association with serial electrocardiograms [ECG], hemodynamics, oxygen saturation, and subjective symptoms) and measurement of ventilatory gas exchange amounts to a superior method to: 1) accurately quantify cardiorespiratory fitness (CRF), 2) delineate the physiologic system(s) underlying exercise responses, which can be applied as a means to identify the exercise-limiting pathophysiologic mechanism(s) and/or performance differences, and 3) formulate function-based prognostic stratification. Cardiopulmonary ET certainly carries an additional cost as well as competency requirements and is not an essential component of evaluation in all patient populations. However, there are several conditions of confirmed, suspected, or unknown etiology where the data gained from this form of ET is highly valuable in terms of clinical decision making
DOCUMENT
From an evidence-based perspective, cardiopulmonary exercise testing (CPX) is a well-supported assessment technique in both the United States (US) and Europe. The combination of standard exercise testing (ET) [i.e. progressive exercise provocation in association with serial electrocardiograms (ECGs), haemodynamics, oxygen saturation, and subjective symptoms] and measurement of ventilatory gas exchange amounts to a superior method to: (i) accurately quantify cardiorespiratory fitness (CRF), (ii) delineate the physiologic system(s) underlying exercise responses, which can be applied as a means to identify the exercise-limiting pathophysiological mechanism(s) and/or performance differences, and (iii) formulate function-based prognostic stratification. Cardiopulmonary ET certainly carries an additional cost as well as competency requirements and is not an essential component of evaluation in all patient populations. However, there are several conditions of confirmed, suspected, or unknown aetiology where the data gained from this form of ET is highly valuable in terms of clinical decision making.1
DOCUMENT