Augmented Play Spaces (APS) are (semi-) public environments where playful interaction isfacilitated by enriching the existing environment with interactive technology. APS canpotentially facilitate social interaction and physical activity in (semi-)public environments. Incontrolled settings APS show promising effects. However, people’s willingness to engagewith APSin situ, depends on many factors that do not occur in aforementioned controlledsettings (where participation is obvious). To be able to achieve and demonstrate thepositive effects of APS when implemented in (semi-)public environments, it is important togain more insight in how to motivate people to engage with them and better understandwhen and how those decisions can be influenced by certain (design) factors. TheParticipant Journey Map (PJM) was developed following multiple iterations. First,based on related work, and insights gained from previously developed andimplemented APS, a concept of the PJM was developed. Next, to validate and refinethe PJM, interviews with 6 experts with extensive experience with developing andimplementing APS were conducted. Thefirst part of these interviews focused oninfluential (design) factors for engaging people into APS. In the second part, expertswere asked to provide feedback on thefirst concept of the PJM. Based on the insightsfrom the expert interviews, the PJM was adjusted and refined. The Participant JourneyMap consists of four layers: Phases, States, Transitions and Influential Factors. There aretwo overarchingphases:‘Onboarding’and‘Participation’and 6statesa (potential)participant goes through when engaging with an APS:‘Transit,’‘Awareness,’‘Interest,’‘Intention,’‘Participation,’‘Finishing.’Transitionsindicate movements between states.Influential factorsare the factors that influence these transitions. The PJM supportsdirections for further research and the design and implementation of APS. Itcontributes to previous work by providing a detailed overview of a participant journeyand the factors that influence motivation to engage with APS. Notable additions are thedetailed overview of influential factors, the introduction of the states‘Awareness,’‘Intention’and‘Finishing’and the non-linear approach. This will support taking intoaccount these often overlooked, key moments in future APS research and designprojects. Additionally, suggestions for future research into the design of APS are given.
DOCUMENT
Lector Sanne de Vries startte tien jaar geleden als lector bij het lectoraat Gezonde Leefstijl in Stimulerende Omgeving (GLSO). In het afgelopen decennium veranderde de focus van het lectoraat én groeide de kenniskring uit tot een maatschappelijk betrokken groep onderzoekers met impact in het werkveld. Een terugblik op tien jaar onderzoek met de lector die zelf minimaal drie keer per week sport en houdt van gezond én lekker eten.
DOCUMENT
Background & aims: In dietary practice, it is common to estimate protein requirements on actual bodyweight, but corrected bodyweight (in cases with BMI <20 kg/m2 and BMI ≥30 kg/m2) and fat free mass (FFM) are also used. Large differences on individual level are noticed in protein requirements using these different approaches. To continue this discussion, the answer is sought in a large population to the following question: Will choosing actual bodyweight, corrected bodyweight or FFM to calculate protein requirements result in clinically relevant differences? Methods: This retrospective database study, used data from healthy persons ≥55 years of age and in- and outpatients ≥18 years of age. FFM was measured by air displacement plethysmography technology or bioelectrical impedance analysis. Protein requirements were calculated as 1) 1.2 g (g) per kilogram (kg) actual bodyweight or 2) corrected bodyweight or 3) 1.5 g per kg FFM. To compare these three approaches, the approach in which protein requirement is based on FFM, was used as reference method. Bland–Altman plots with limits of agreement were used to determine differences, analyses were performed for both populations separately and stratified by BMI category and gender. Results: In total 2291 subjects were included. In the population with relatively healthy persons (n = 506, ≥55 years of age) mean weight is 86.5 ± 18.2 kg, FFM is 51 ± 12 kg and in the population with adult in- and outpatients (n = 1785, ≥18 years of age) mean weight is 72.5 ± 18.4 kg, FFM is 51 ± 11 kg. Clinically relevant differences were found in protein requirement between actual bodyweight and FFM in most of the participants with overweight, obesity or severe obesity (78–100%). Using corrected bodyweight, an overestimation in 48–92% of the participants with underweight, healthy weight and overweight is found. Only in the Amsterdam UMC population, protein requirement is underestimated when using the approach of corrected bodyweight in participants with severe obesity. Conclusion: The three approaches in estimation of protein requirement show large differences. In the majority of the population protein requirement based on FFM is lower compared to actual or corrected bodyweight. Correction of bodyweight reduces the differences, but remain unacceptably large. It is yet unknown which method is the best for estimation of protein requirement. Since differences vary by gender due to differences in body composition, it seems more accurate to estimate protein requirement based on FFM. Therefore, we would like to advocate for more frequent measurement of FFM to determine protein requirements, especially when a deviating body composition is to be expected, for instance in elderly and persons with overweight, obesity or severe obesity.
DOCUMENT