Purpose: To evaluate the effects of a combination of wheelchair mobility skills (WMS) training and exercise training on physical activity (PA), WMS, confidence in wheelchair mobility, and physical fitness. Methods: Youth using a manual wheelchair (n = 60) participated in this practice-based intervention, with a waiting list period (16 weeks), exercise training (8 weeks), WMS training (8 weeks), and follow-up (16 weeks). Repeated measures included: PA (Activ8), WMS (Utrecht Pediatric Wheelchair Mobility Skills Test), confidence in wheelchair mobility (Wheelchair Mobility Confidence Scale), and physical fitness (cardiorespiratory fitness, (an)aerobic performance) and were analysed per outcome parameter using a multilevel model analyses. Differences between the waiting list and training period were determined with an unpaired sample t-test. Results: Multilevel model analysis showed significant positive effects for PA (p = 0.01), WMS (p < 0.001), confidence in wheelchair mobility (p < 0.001), aerobic (p < 0.001), and anaerobic performance (p < 0.001). Unpaired sample t-tests underscored these effects for PA (p < 0.01) and WMS (p < 0.001). There were no effects on cardiorespiratory fitness. The order of training (exercise before WMS) had a significant effect on confidence in wheelchair mobility. Conclusions: A combination of exercise and WMS training appears to have significant positive long-term effects on PA, WMS, confidence in wheelchair mobility, and (an)aerobic performance in youth using a manual wheelchair.Implications for rehabilitationExercise training and wheelchair mobility skills (WMS) training can lead to a sustained improvement in physical activity (PA) in youth using a manual wheelchair.These combined trainings can also lead to a sustained increase in WMS, confidence in wheelchair mobility, and (an)aerobic performance.More attention is needed in clinical practice and in research towards improving PA in youth using a manual wheelchair.
PurposeCancer‐related fatigue is one of the most distressing side effects of childhood cancer treatment. Physical activity can decrease fatigue and has positive effects on other health outcomes. Most research on physical activity pertains to adults, and the few studies that focus on children have limited follow‐up time. This study evaluates cancer‐related fatigue in children and its association with physical activity over a one‐year time period.MethodsSixty‐eight children with cancer (7–18 years) were recruited during or within the first year after treatment. Physical activity (Actical activity monitor) and cancer‐related fatigue (Pediatric Quality‐of‐Life Questionnaire Multidimensional Fatigue Scale (PedsQL‐MFS), self‐ and parent‐ reports) were assessed at baseline, 4 months, and 12 months. PedsQL‐MFS scores were compared with Dutch norms. Longitudinal association of cancer‐related fatigue with physical activity was evaluated (No. NTR 1531).ResultsGenerally, PedsQL‐MFS scores were worse than norms at baseline and 4 months, and recovered by 12 months except for the parent‐proxy scores in adolescents. Younger children (≤12 years) self‐reported comparable or better scores than norms. Physical activity generally improved over time, but patients mostly remained sedentary. During follow‐up, increased physical activity was associated with less cancer‐related fatigue.ConclusionCancer‐related fatigue in children improves over time, and increased physical activity is associated with less cancer‐related fatigue. Given the sedentary lifestyle of this population, the positive effect of physical activity on cancer‐related fatigue, and the many other health benefits of an active lifestyle, it is important to stimulate physical activity in childhood cancer patients and survivors.
The TOP program is a fully implemented responsive parenting intervention for very preterm born infants. Fidelity monitoring of interventions is important for preserving program adherence, impact outcomes and to make evidence-based adaptations. The aim of this study was to develop a fidelity tool for the TOP program following an iterative and co-creative process and subsequently evaluate the reliability of the tool. Three consecutive phases were carried out. Phase I: Initial development and pilot testing two methods namely self-report and video based observation. Phase II: Adaptations and refinements. Phase III: Evaluation of the psychometric properties of the tool based on 20 intervention videos rated by three experts.The interrater reliability of the adherence and competence subscales was good (ICC.81 to .84) and varied from moderate to excellent for specific items (ICC between .51 and .98). The FITT displayed a high correlation (Spearman’s rho.79 to.82) between the subscales and total impression item. The co-creative and iterative process resulted in a clinical useful and reliable tool for evaluating fidelity in the TOP program. This study offers insights in the practical steps in the development of a fidelity assessment tool which can be used by other intervention developers.
MULTIFILE