BACKGROUND: A significant number of older patients planned for transcatheter aortic valve implantation (TAVI) experience a decline in physical functioning and death, despite a successful procedure.OBJECTIVE: To systematically review the literature on the association of preprocedural muscle strength and physical performance with functional decline or long-term mortality after TAVI.METHODS: We followed the PRISMA guidelines and pre-registered this review at PROSPERO (CRD42020208032). A systematic search was conducted in MEDLINE and EMBASE from inception to 10 December 2021. Studies reporting on the association of preprocedural muscle strength or physical performance with functional decline or long-term (>6 months) mortality after the TAVI procedure were included. For outcomes reported by three or more studies, a meta-analysis was performed.RESULTS: In total, two studies reporting on functional decline and 29 studies reporting on mortality were included. The association with functional decline was inconclusive. For mortality, meta-analysis showed that low handgrip strength (hazard ratio (HR) 1.80 [95% confidence interval (CI): 1.22-2.63]), lower distance on the 6-minute walk test (HR 1.15 [95% CI: 1.09-1.21] per 50 m decrease), low performance on the timed up and go test (>20 s) (HR 2.77 [95% CI: 1.79-4.30]) and slow gait speed (<0.83 m/s) (HR 2.24 [95% CI: 1.32-3.81]) were associated with higher long-term mortality.CONCLUSIONS: Low muscle strength and physical performance are associated with higher mortality after TAVI, while the association with functional decline stays inconclusive. Future research should focus on interventions to increase muscle strength and physical performance in older cardiac patients.
DOCUMENT
This paper investigates whether encouraging children to become more physically active in their everyday life affects their primary school performance. We use data from a field quasi‐experiment called the Active Living Program, which aimed to increase active modes of transportation to school and active play among 8‐ to 12‐year‐olds living in low socioeconomic status (SES) areas in the Netherlands. Difference‐in‐differences estimations reveal that while the interventions increase time spent on physical activity during school hours, they negatively affect school performance, especially among the worst‐performing students. Further analyses reveal that increased restlessness during instruction time is a potential mechanism for this negative effect. Our results suggest that the commonly found positive effects of exercising or participating in sports on educational outcomes may not be generalizable to physical activity in everyday life. Policymakers and educators who seek to increase physical activity in everyday life need to weigh the health and well‐being benefits against the probability of increasing inequality in school performance.
DOCUMENT
Progressive disability develops with older age in association with underlying disease, comorbidity and frailty. Physical performance characteristics are important to improve the physical condition of older persons and therefore may be able to prevent or delay the onset of (progressive) disability. However lack of understanding of the physiology and etiology of functional decline leading to disability causes a problem in the development of effective preventive interventions. The aim of the present review is to determine which physical performance characteristics are determinants of disability in the older general population.
DOCUMENT
With increasing penetration rates of driver assistance systems in road vehicles, powerful sensing and processing solutions enable further automation of on-road as well as off-road vehicles. In this maturing environment, SMEs are stepping in and education needs to align with this trend. By the input of student teams, HAN developed a first prototype robot platform to test automated vehicle technology in dynamic road scenarios that include VRUs (Vulnerable Road Users). These robot platforms can make complex manoeuvres while carrying dummies of typical VRUs, such as pedestrians and bicyclists. This is used to test the ability of automated vehicles to detect VRUs in realistic traffic scenarios and exhibit safe behaviour in environments that include VRUs, on public roads as well as in restricted areas. Commercially available VRU-robot platforms are conforming to standards, making them inflexible with respect to VRU-dummy design, and pricewise they are far out of reach for SMEs, education and research. CORDS-VTS aims to create a first, open version of an integrated solution to physically emulate traffic scenarios including VRUs. While analysing desired applications and scenarios, the consortium partners will define prioritized requirements (e.g. robot platform performance, dummy types and behaviour, desired software functionality, etc.). Multiple robots and dummies will be created and practically integrated and demonstrated in a multi-VRU scenario. The aim is to create a flexible, upgradeable solution, published fully in open source: The hardware (robot platform and dummies) will be published as well-documented DIY (do-it-yourself) projects and the accompanying software will be published as open-source projects. With the CORDS-VTS solution, SME companies, researchers and educators can test vehicle automation technology at a reachable price point and with the necessary flexibility, enabling higher innovation rates.
The ENCHANT project aims to clarify the differences between circular Calcium Carbonate (CCC) and grounded Calcium Carbonate (GCC), in order to expand the applications of the circular alternative CCC in the paint and coating industry. CCC is produced by pyrolysis from paper waste in an innovative process developed by the company Alucha Works B.V., and it can be applied again as filler or binder in consumer products (e.g. plastics, rubbers, paints and coatings) in a cost-effective manner. Products containing CCC have a higher content of circular resources, which minimizes their carbon footprint, and reduces the exploitation of primary resources. Performances of CCC in oil-based paints, however, is not optimal, due to a larger oil adsorption as compared to GCC. A physical and chemical characterization of CCC and GCC samples, including competitive oil-water adsorption measurements, would help Alucha to formulate a solution to match the properties of CCC and GCC, either adjusting the recycling process or applying a surface modification treatment to CCC. This would enable Alucha to expand the market for CCC, making oil-based formulation products more circular.
The RAAK Pro MARS4Earth project focuses on the question of whether it is possible to develop a prototype of a modular and autonomous aerial manipulator (drone + robot arm) that can physically interact with a realistic outdoor environment, and what possibilities this creates to several application domains. In essence, the aerial manipulator acts as "arms and hands in the air", which can be used for both active interaction (maintenance of offshore windturbine) and passive interaction (selective plant treatment and firefighting). The modular aerial manipulator consists of four basic building blocks: • Mission-specific interaction module(s); • Intelligent surface exploration; • Adaptive interaction control algorithm(s); • Advanced on-board perception and decision module(s). In the meantime the first version of the aforementioned modular building blocks have been designed and realized by various consortium partners. However, due to the various measure of the COVID 19, consortium partners and researchers were not able to carry out the integration of various modules to realize the complete system. Moreover, it was not possible to conduct thorough tests in the operational environment to evaluate the performance of the first prototype. This is a crucial step tp realize the aerial manipulator with the envisaged modularity and performance. In this RAAK Impulse project, we will conduct integration of the first versions of the modules developed by the various consortium partners. Moreover, we will conduct thorough test in Emshave and Twente safety campus to investigate the functionality and performance of the developed integrated prototype. With this Impulse, we will be able to make up for the delay caused by the COVID -19 measures and conclude the project by realizing the original objectives of the MARS4Earth project.