Currently EVs constitute only 1% of all vehicles on the road. We are at the eve of the large scale introduction of EVs. Large scale introduction requires a significant growth in charging infrastructure. In an urban context, in which many rely on on-street charging facilities, policy makers deal with a large number of concerns. Policy makers are uncertain about which charging deployment strategy to follow. This paper presents results from simulating different strategies for charging infrastructure roll to facilitate a large scale introduction of EVs using agent based simulation. In contrast to other models, the model uses observed charging patterns from EVs instead of travel patterns of fossil fuelled cars. The simulation incorporates different user types (Inhabitants, visitors, taxis and sharing) to model the complexity of charging in an urban environment. Different scenarios are explored along the lines of the type of charging infrastructure (level 2, clustered level 2, fast charging), the intensity of rollout (EV to Charging point ratio) and adoption rates. The simulation measures both the success rate and the additional miles cruising for a charging station. Results shows that scaling effects in charging infrastructure exist allowing for more efficient use of the infrastructure at a larger size.
The Netherlands is a frontrunner in the field of public charging infrastructure, having a high number of public charging stations per electric vehicle (EV) in the world. During the early years of adoption (2012-2015) a large percentage of the EV fleet were Plugin Hybrid Electric Vehicles (PHEV)due to the subsidy scheme at that time. With an increasing number of Full Electric Vehicles (FEVs) on the market and a current subsidy scheme for FEV only, a transition of the EV fleet from PHEV to FEV is expected. This is hypothesized to have effect on charging behavior of the complete fleet, reason to understand better how PHEVs and FEVs differ in charging behavior and how this impacts charging infrastructure usage. In this paper, the effects of the transition of PHEV to FEV is simulated by extending an existing Agent Based Model. Results show important effects of this transitionon charging infrastructure performance.
Dit overzicht geeft een indruk van de ontwikkeling van elektrisch vervoer in Nederland. Het wordt maandelijks samengesteld door de Rijksdienst voor Ondernemend Nederland, in opdracht van het ministerie van Economische Zaken. De cijfers mogen met bronvermelding (Rijksdienst voor Ondernemend Nederland –RVO.nl) gebruikt worden.