This paper presents the results of a literature review in regard to Social Media and participation. Besides that, to understand the meaning and impact of Social Media on elections, we show field results from the 2010 and 2011 elections in the Netherlands. There are several challenges when it comes to engaging people in party politics. The current findings in literature show us that previous efforts to shape public participation with prior Internet tools did not meet expectations. With Social Media this could change, because participation seems to be the key concept that explains the difference between ‘old’ web and ‘new’ Social Media. In the Netherlands, Social Media did not significantly influence voting behaviour during the local elections (2010/2011). But, during the national elections (2010), politicians with higher Social Media engagement got relatively more votes within most political parties. In conclusion, we propose a future research agenda to study how political parties could benefit from Social Media to reinvent and improve the way they work with their members and volunteers. Notice: © IFIP, 2011. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution. The definitive version was published in Lecture Notes in Computer Science, 2011, Volume 6847/2011, 25-35, Boston: Springer.
MULTIFILE
This dissertation aims to strengthen socioscientific issues (SSI) education by focusing on the resources available to students. SSI education is a type of science and citizenship education that supports students’ informed and critical engagement with social issues that have scientific or technological dimensions. This dissertation explores students’ SSI-related resources relevant to their engagement with SSI, such as their attitudes and social resources. The dissertation consists of four papers. The first is a position paper that introduces the concept of socioscientific capital and argues why it is important to pay attention to students’ resources in SSI-based teaching. The other three papers involve empirical, quantitative studies. Two questionnaires were developed that were used to investigate student differences regarding engagement with SSI: the Pupils’ Attitudes towards Socioscientific Issues (PASSI) questionnaire and the Use of Sources of Knowledge (USK) questionnaire. The final study is an exploration of the effects of SSI-based teaching on students’ attitudes toward SSI, considering socioscientific capital.
MULTIFILE
In: Frank Gadinger, Martina Kopf, Ayşem Mert, and Christopher Smith (eds.). Political Storytelling: From Fact to Fiction (Global Dialogues 12) This essay presents a summary of important perspectives concerning the distinction between what counts as truth or fiction. As a source of inspiration, it starts with two examples found in literature – the first a classical Spanish novel and the second a collection of stories written by the leader of a social movement in Mexico. These two examples of the conflictive relations between truth and fiction, authenticity and imagination serve as a source of inspiration for the rest of this article, which shows that this issue has been a subject of intense debate in philosophy and in the philosophy of science and still presents a challenge in the 21st century. The essay states that absolute, objective truth is a myth. It describes that what counts as ‘truth’ in a particular era, is, among other things, the result of power relations. It suggests productive ways to deal with this problem in modern society, through deliberative, emancipatory processes of reflexivity (Weick 1999), participatory research and dialogue, facilitating innovation and generation of new solutions.
LINK
The Netherlands is facinggreat challenges to achieve (inter)national climate mitigation objectives inlimited time, budget and space. Drastic innovative measures such as floatingsolar parks are high on political agendas and are entering our water systems.The clear advantages of floating solar (multifunctional use of space) led to afast deployment of renewable energy sources without extensive research toadequately evaluate the impacts on our environment. Acquisition ofresearch data with holistic monitoring methods are urgently needed in order toprevent disinvestments.In this project 10 SMEs with different expertiseand technologies are joining efforts with researchers and four public parties(and 12 indirectly involved) to answer the research question “Which monitoringtechnologies and intelligent data interpretation techniques are requiredto be able to conduct comprehensive, efficient and cost effective monitoring ofthe impacts of floating solar panels in their surroundings?"The outputs after a two-yearproject will play a significant and indispensable role in making Green EnergyResources Greener. Specific output includes a detailed inventory of existingprojects, monitoring method for collection/analysis of datasets(parameters/footage on climate, water quality, ecology) on the effects offloating solar panels on the environment using heterogeneous unmanned robots,workshops with public & private partners and stakeholders,scientific and technical papers and update of national guidelines for optimizingthe relationship between solar panels and the surrounding environment. Projectresults have a global interest and the consortium partners aim at upscaling forthe international market. This project will enrich the involved partners withtheir practical knowledge, and SMEs will be equipped with the new technologiesto be at the forefront and benefit from the increasing floating solar marketopportunities. This project will also make a significant contribution tovarious educational curricula in universities of applied sciences.The Netherlands is facinggreat challenges to achieve (inter)national climate mitigation objectives inlimited time, budget and space. Drastic innovative measures such as floatingsolar parks are high on political agendas and are entering our water systems.The clear advantages of floating solar (multifunctional use of space) led to afast deployment of renewable energy sources without extensive research toadequately evaluate the impacts on our environment. Acquisition ofresearch data with holistic monitoring methods are urgently needed in order toprevent disinvestments.In this project 10 SMEs with different expertiseand technologies are joining efforts with researchers and four public parties(and 12 indirectly involved) to answer the research question “Which monitoringtechnologies and intelligent data interpretation techniques are requiredto be able to conduct comprehensive, efficient and cost effective monitoring ofthe impacts of floating solar panels in their surroundings?"The outputs after a two-yearproject will play a significant and indispensable role in making Green EnergyResources Greener. Specific output includes a detailed inventory of existingprojects, monitoring method for collection/analysis of datasets(parameters/footage on climate, water quality, ecology) on the effects offloating solar panels on the environment using heterogeneous unmanned robots,workshops with public & private partners and stakeholders,scientific and technical papers and update of national guidelines for optimizingthe relationship between solar panels and the surrounding environment. Projectresults have a global interest and the consortium partners aim at upscaling forthe international market. This project will enrich the involved partners withtheir practical knowledge, and SMEs will be equipped with the new technologiesto be at the forefront and benefit from the increasing floating solar marketopportunities. This project will also make a significant contribution tovarious educational curricula in universities of applied sciences.
The Netherlands is facing great challenges to achieve (inter)national climate mitigation objectives in limited time, budget and space. Drastic innovative measures such as floating solar parks are high on political agendas and are entering our water systems . The clear advantages of floating solar (multifunctional use of space) led to a fast deployment of renewable energy sources without extensive research to adequately evaluate the impacts on our environment. Acquisition of research data with holistic monitoring methods are urgently needed in order to prevent disinvestments. In this proposal ten SMEs with different expertise and technologies are joining efforts with researchers and four public parties (and 12 indirectly involved) to answer the research question “Which monitoring technologies and intelligent data interpretation techniques are required to be able to conduct comprehensive, efficient and cost-effective monitoring of the impacts of floating solar panels in their surroundings?" The outputs after a two-year project will play a significant and indispensable role in making Green Energy Resources Greener. Specific output includes a detailed inventory of existing projects, monitoring method for collection/analysis of datasets (parameters/footage on climate, water quality, ecology) on the effects of floating solar panels on the environment using heterogeneous unmanned robots, workshops with public & private partners and stakeholders, scientific and technical papers and update of national guidelines for optimizing the relationship between solar panels and the surrounding environment. Project results have a global interest and the consortium partners aim at upscaling for the international market. This project will enrich the involved partners with their practical knowledge, and SMEs will be equipped with the new technologies to be at the forefront and benefit from the increasing floating solar market opportunities. This project will also make a significant contribution to various educational curricula in universities of applied sciences.