A previous review concluded that postural sway is increased in patients with low back pain (LBP). However, more detailed analysis of the literature shows that postural deficit may be dependent on experimental conditions in which patients with LBP have been assessed. The research question to be answered in this review was: " Is there any difference in postural sway between subjects with and without LBP across several sensory manipulation conditions?" A literature search in Pubmed, Scopus, Embase and PsychInfo was performed followed by hand search and contact with authors. Studies investigating postural sway during bipedal stance without applying external forces in patients with specific and non-specific LBP compared to healthy controls were included. Twenty three articles fulfilled the eligibility criteria. Most studies reported an increased postural sway in LBP, or no effect of LBP on postural sway. In a minority of studies, a decreased sway was found in LBP patients. There were no systematic differences between studies finding an effect and those reporting no effect of LBP. The proportion of studies finding between-group differences did not increase with increased complexity of sensory manipulations. Potential factors that may have caused inconsistencies in the literature are discussed in this systematic review.
LINK
Patients with non-specific low back pain (LBP) may use postural control strategies that differ from healthy subjects. To study these possible differences, we measured the amount and structure of postural sway, and the response to muscle vibration in a working cohort of 215 subjects. Subjects were standing on a force plate in bipedal stance. In the first trial the eyes were open, no perturbation applied. In the following 6 trials, vision was occluded and subjects stood under various conditions of vibration/no vibration of the lumbar spine or m. Triceps Surae (TSM) on firm surface and on foam surface. We performed a factor analysis to reduce the large amount of variables that are available to quantify all effects. Subjects with LBP showed the same amount of sway as subjects without LBP, but the structure of their sway pattern was less regular with higher frequency content. Subjects with LBP also showed a smaller response to TSM vibration, and a slower balance recovery after cessation of vibration when standing on a solid surface. There was a weak but significant association between smaller responses to TSM vibration and an irregular, high frequency sway pattern, independent from LBP. A model for control of postural sway is proposed. This model suggests that subjects with LBP use more co-contraction and less cognitive control, to maintain a standing balance when compared to subjects without LBP. In addition, a reduced weighting of proprioceptive signals in subjects with LBP is suggested as an explanation for the findings in this study.
LINK
A commentary on: Older adults can improve compensatory stepping with repeated postural perturbations by Dijkstra,B.W., Horak,F.B., Kamsma,Y.P.T., and Peterson,D.S.(2015).Front.AgingNeurosci. 7:201. doi:10.3389/fnagi.2015.00201. In sum, the results of Dijkstra etal. (2015) are of importance and significance for the field of falls prevention and stability control in aging. In particular, the work highlights the importance of multidirectional step or perturbation training, due to a lack of transfer across tasks. Whether this would hold for multidirectional gait perturbations is unclear, due to the influence of forward velocity during walking. Future work should explore different types, intensities and frequencies of perturbations in order to determine the most effective strategy for improving dynamic stability control in healthy older adults and inpatients with declined locomotor performance and increased falls risk. Finally, as Dijkstra etal. (2015) and previous studies found floor effects in the adaptation of young participants, further attempts should be made to appropriately scale perturbations to participant or groupability, in order to reliably compare adaptation across different groups.