Battery energy storage (BES) can provide many grid services, such as power flow management to reduce distribution grid overloading. It is desirable to minimise BES storage capacities to reduce investment costs. However, it is not always clear how battery sizing is affected by battery siting and power flow simultaneity (PFS). This paper describes a method to compare the battery capacity required to provide grid services for different battery siting configurations and variable PFSs. The method was implemented by modelling a standard test grid with artificial power flow patterns and different battery siting configurations. The storage capacity of each configuration was minimised to determine how these variables affect the minimum storage capacity required to maintain power flows below a given threshold. In this case, a battery located at the transformer required 10–20% more capacity than a battery located centrally on the grid, or several batteries distributed throughout the grid, depending on PFS. The differences in capacity requirements were largely attributed to the ability of a BES configuration to mitigate network losses. The method presented in this paper can be used to compare BES capacity requirements for different battery siting configurations, power flow patterns, grid services, and grid characteristics.
DOCUMENT
The circular economy (CE) is heralded as reducing material use and emissions while providing more jobs and growth. We explored this narrative in a series of expert workshops, basing ourselves on theories, methods and findings from science fields such as global environmental input-output analysis, business modelling, industrial organisation, innovation sciences and transition studies. Our findings indicate that this dominant narrative suffers from at least three inconvenient truths. First, CE can lead to loss of GDP. Each doubling of product lifetimes will halve the related industrial production, while the required design changes may cost little. Second, the same mechanism can create losses of production jobs. This may not be compensated by extra maintenance, repair or refurbishing activities. Finally, ‘Product-as-a-Service’ business models supported by platform technologies are crucial for a CE transition. But by transforming consumers from owners to users, they lose independence and do not share in any value enhancement of assets (e.g., houses). As shown by Uber and AirBNB, platforms tend to concentrate power and value with providers, dramatically affecting the distribution of wealth. The real win-win potential of circularity is that the same societal welfare may be achieved with less production and fewer working hours, resulting in more leisure time. But it is perfectly possible that powerful platform providers capture most added value and channel that to their elite owners, at the expense of the purchasing power of ordinary people working fewer hours. Similar undesirable distributional effects may occur at the global scale: the service economies in the Global North may benefit from the additional repair and refurbishment activities, while economies in the Global South that are more oriented towards primary production will see these activities shrink. It is essential that CE research comes to grips with such effects. Furthermore, governance approaches mitigating unfair distribution of power and value are hence essential for a successful circularity transition.
LINK
In wheelchair sports, there is an increasing need to monitor mechanical power in the field. When rolling resistance is known, inertial measurement units (IMUs) can be used to determine mechanical power. However, upper body (i.e., trunk) motion affects the mass distribution between the small front and large rear wheels, thus affecting rolling resistance. Therefore, drag tests – which are commonly used to estimate rolling resistance – may not be valid. The aim of this study was to investigate the influence of trunk motion on mechanical power estimates in hand-rim wheelchair propulsion by comparing instantaneous resistance-based power loss with drag test-based power loss. Experiments were performed with no, moderate and full trunk motion during wheelchair propulsion. During these experiments, power loss was determined based on 1) the instantaneous rolling resistance and 2) based on the rolling resistance determined from drag tests (thus neglecting the effects of trunk motion). Results showed that power loss values of the two methods were similar when no trunk motion was present (mean difference [MD] of 0.6 1.6 %). However, drag test-based power loss was underestimated up to −3.3 2.3 % MD when the extent of trunk motion increased (r = 0.85). To conclude, during wheelchair propulsion with active trunk motion, neglecting the effects of trunk motion leads to an underestimated mechanical power of 1 to 6 % when it is estimated with drag test values. Depending on the required accuracy and the amount of trunk motion in the target group, the influence of trunk motion on power estimates should be corrected for.
DOCUMENT
A major challenge in the textile sector is achieving true circularity while preventing fraud, including false sustainability claims and material mislabelling. The complexity of supply chains and outdated certification systems have resulted in a lack of accountability and transparency. This project addresses these issues by developing and implementing Digital Product Passports, integrated with digital trust mechanisms as verifiable credentials, to create a transparent, responsible, and accountable textile supply chain. The project traces the journey of a corporate fashion t-shirt from cotton sourcing in India to production and distribution in the Netherlands, ensuring full transparency and traceability. Its goal is to drive a shift towards a circular economy by fostering collaboration across the supply chain and empowering stakeholders, particularly Tiers 3 and 4 in the Global South. Schijvens Corporate Fashion leads the effort with regenerative cotton sourcing through Raddis®Cotton, utilising Aware™’s technology solution. Adopting a ‘Fibre-Forward’ approach, the consortium ensures traceability by integrating data from raw material sourcing to end-user. This approach benefits all stakeholders, from farmers to garment producers, by providing verifiable information on fibre origins, social conditions, and ecological impacts. By tracking each fibre and collecting direct data, the project removes the opacity that can undermine sustainability claims. The project enhances accountability and sustainability compliance by utilising decentralised technologies for product verification. Integrating digital identity wallets for individuals and organisations, secured with verifiable credentials, enhances trust and accountability, fostering circular economy practices. Rather than seeing DPPs as the end goal, the project views them as catalysts for systemic change. It prioritises continuous improvement, collaboration, and shared benefits, aiming to establish a regenerative circular economy. Through a practical toolkit, the project will help organisations and policymakers navigate DPP adoption, strengthening transparency and creating a scalable, inclusive system for supply chains across the Global South and -North.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.
Residential electricity distribution grid capacityis based on the typical peak load of a house and the loadsimultaneity factor. Historically, these values have remainedpredictable, but this is expected to change due to increasingelectric heating using heat pumps and rooftop solar panelelectricity generation. It is currently unclear how this increasein electrification will impact household peak load and loadsimultaneity, and hence the required grid capacity of residentialelectricity distribution grids. To gain better insight, transformerand household load measurements were taken in an all-electricneighborhood over a period of three years. These measurementswere analyzed to determine how heat pumps and solar panelswill alter peak load and load simultaneity and hence gridcapacity design parameters. Moreover, the potential for smartgrids to reduce peak loads and load simultaneity, and hencereduce required grid capacities, was examined.