Battery energy storage (BES) can provide many grid services, such as power flow management to reduce distribution grid overloading. It is desirable to minimise BES storage capacities to reduce investment costs. However, it is not always clear how battery sizing is affected by battery siting and power flow simultaneity (PFS). This paper describes a method to compare the battery capacity required to provide grid services for different battery siting configurations and variable PFSs. The method was implemented by modelling a standard test grid with artificial power flow patterns and different battery siting configurations. The storage capacity of each configuration was minimised to determine how these variables affect the minimum storage capacity required to maintain power flows below a given threshold. In this case, a battery located at the transformer required 10–20% more capacity than a battery located centrally on the grid, or several batteries distributed throughout the grid, depending on PFS. The differences in capacity requirements were largely attributed to the ability of a BES configuration to mitigate network losses. The method presented in this paper can be used to compare BES capacity requirements for different battery siting configurations, power flow patterns, grid services, and grid characteristics.
DOCUMENT
The Smart Current Limiter is a switching DC to DC converter that provides a digitally pre-set input current control for inrush limiting and power management. Being able to digitally adjust the current level in combination with external feedback can be used for control systems like temperature control in high power DC appliances. Traditionally inrush current limiting is done using a passive resistance whose resistance changes depending on the current level. Bypassing this inrush limiting resister with a Mosfet improves efficiency and controllability, but footprint and losses remain large. A switched current mode controlled inrush limiter can limit inrush currents and even control the amount of current passing to the application. This enables power management and inrush current limitation in a single device. To reduce footprint and costs a balance between losses and cost-price on one side and electromagnetic interference on the other side is sought and an optimum switching frequency is chosen. To reduce cost and copper usage, switching happens on a high frequency of 300kHz. This increases the switching losses but greatly reduces the inductor size and cost compared to switching supplies running on lower frequencies. Additional filter circuits like snubbers are necessary to keep the control signals and therefore the output current stable.
DOCUMENT
Droop control is used for power management in DC grids. Based on the level of the DC grid voltage, the amount of power regulated to or from the appliance is regulated such, that power management is possible. The Universal 4 Leg is a laboratory setup for studying the functionality of a grid manager for power management. It has four independent outputs that can be regulated with pulse width modulation to control the power flow between the DC grid and for example, a rechargeable battery, solar panel or any passive load like lighting or heating.
DOCUMENT
AANLEIDING In het RAAK-MKB project ‘Gelijkspanning breng(t) je verder’ heeft De Haagse Hogeschool, specifiek de opleiding Elektrotechniek, ervaren dat de opkomst van het onderwerp ‘Gelijkspanning’ (ook wel DC) in het beroepenveld sterk samenhangt met ontwikkelingen in het vakgebied van ‘Vermogenselektronica’ of ‘Power Eletronics’. Het beroepenveld vraagt steeds vaker om steeds meer kennis op dit vakgebied, in het kader van bijvoorbeeld de energietransitie, Smart Grids, Internet-of-Things etc. Om deze kennis op een goed gestructureerde wijze over te dragen aan studenten, moeten er een aantal belemmeringen worden weggewerkt. Een van deze belemmeringen is de beperkte beschikbaarheid van kennis; het vakgebied is relatief nieuw en nog sterk in ontwikkeling. Binnen De Haagse Hogeschool is door de opleiding Elektrotechniek (met kennis van de nog weg te werken belemmeringen) de bewuste keuze gemaakt om zich binnen Nederland te willen profileren met het onderwerp ‘Gelijkspanning’. Vanuit het eerdere RAAK-MKB project ‘Gelijkspanning breng(t) je verder’ werden hiertoe een eerste vak en practicum ontwikkeld: Vermogenselektronica 1. Hierin worden beginselen van DC-DC omvormers behandeld. DC-DC omvormers zorgen voor het transformeren van DC-spanningen, om energie bij hoge spanningen en dus lage verliezen te kunnen transporteren. Vanaf het huidige collegejaar (2015-2016) is ook een tweede vak op dit gebied toegevoegd aan het curriculum: Vermogenselektronica 2: hierin worden DC-AC omvormers op hoofdlijnen behandeld. Deze omvormers zorgen ervoor dat veel gebruikte types motoren aangedreven kunnen worden met gelijkspanning. Deze hoofdlijnen staan in de ogen van het beroepenveld nog (te) ver af van toepassingen waarmee zij werken. Daarbij moet gedacht worden aan bijvoorbeeld elektrische mobiliteit (specifieke types motoren), verlichting (DC-DC), distributietechnieken (DC-DC op hogere vermogens) of slimme netten (integratie van energietechniek, communicatietechnologie en regeltechniek / embedded systems). DOELSTELLING Het doel van het project is het opstellen van een implementatiewijze ter verdere invulling van de onderwerpen ‘Gelijkspanning’ en ‘Vermogenselektronica’ in het curriculum van de opleiding Elektrotechniek voor de teamleider van Elektrotechniek van De Haagse Hogeschool om de gewenste profilering te kunnen realiseren. ACTIVITEITEN Vanuit de curriculum commissie van de opleiding Elektrotechniek wordt opdracht gegeven aan een apart team om het implementatievoorstel voor te bereiden. Hierin werken twee docent/onderzoekers samen met de teamleider en enkele extern specialisten. In vijf opeenvolgende stappen wordt op een top-down manier gewerkt aan 1. Formuleren competenties voor DC 2. Hoofdstromen curriculum inrichten 3. Uitwerken vakinhoudelijke gebieden Elektrotechniek (‘leeg vel papier’) 4. Koppelen opzet aan bezetting en kennis in het team en bij partners 5. Voorbereiden besluitvorming RESULTAAT Op deze wijze wordt een heldere visie ontwikkeld op het benodigde onderwijs om het onderwerp gelijkspanning gestructureerd aan te kunnen bieden. Daarbij gaat het om vakinhoudelijke kennis in vakken, met bijbehorende practica en projecten. Om deze kennis goed aan te bieden wordt nadrukkelijk ook de samenwerking met andere kennisinstellingen (zoals Zuyd Hogeschool en de TU-Delft) gezocht.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.
Based on the model outcomes, Houtlaan’s energy transition will likely result in congestion and curtailmentproblems on the local electricity grid within the next 5-7 years, possibly sooner if load imbalance between phasesis not properly addressed.During simulations, the issue of curtailment was observed in significant quantities on one cable, resulting in aloss of 8.292 kWh of PV production per year in 2030. This issue could be addressed by moving some of thehouses on the affects cable to a neighboring under-utilized cable, or by installing a battery system near the end ofthe affected cable. Due to the layout of the grid, moving the last 7 houses on the affected cable to the neighboringcable should be relatively simple and cost-effective, and help to alleviate issues of curtailment.During simulations, the issue of grid overloading occurred largely as a result of EV charging. This issue can bestbe addressed by regulating EV charging. Based on current statistics, the bulk of EV charging is expected to occurin the early evening. By prolonging these charge cycles into the night and early morning, grid overloading canlikely be prevented for the coming decade. However, such a control system will require some sort of infrastructureto coordinate the different EV charge cycles or will require smart EV chargers which will charge preferentiallywhen the grid voltage is above a certain threshold (i.e., has more capacity available).A community battery system can be used to increase the local consumption of produced electricity within theneighborhood. Such a system can also be complemented by charging EV during surplus production hours.However, due to the relatively high cost of batteries at present, and losses due to inefficiencies, such a systemwill not be financially feasible without some form of subsidy and/or unless it can provide an energy service whichthe grid operator is willing to pay for (e.g. regulating power quality or line voltage, prolonging the lifetime of gridinfrastructure, etc.).A community battery may be most useful as a temporary solution when problems on the grid begin to occur, untila more cost-effective solution can be implemented (e.g. reinforcing the grid, implementing an EV charge controlsystem). Once a more permanent solution is implemented, the battery could then be re-used elsewhere.The neighborhood of Houtlaan in Assen, the Netherlands, has ambitious targets for reducing the neighborhood’scarbon emissions and increasing their production of their own, sustainable energy. Specifically, they wish toincrease the percentage of houses with a heat pump, electric vehicle (EV) and solar panels (PV) to 60%, 70%and 80%, respectively, by the year 2030. However, it was unclear what the impacts of this transition would be onthe electricity grid, and what limitations or problems might be encountered along the way.Therefore, a study was carried out to model the future energy load and production patterns in Houtlaan. Thepurpose of the model was to identify and quantify the problems which could be encountered if no steps are takento prevent these problems. In addition, the model was used to simulate the effectiveness of various proposedsolutions to reduce or eliminate the problems which were identified