Background & aims: Individual energy requirements of overweight and obese adults can often not be measured by indirect calorimetry, mainly due to the time-consuming procedure and the high costs. To analyze which resting energy expenditure (REE) predictive equation is the best alternative for indirect calorimetry in Belgian normal weight to morbid obese women.Methods: Predictive equations were included when based on weight, height, gender, age, fat free mass and fat mass. REE was measured with indirect calorimetry. Accuracy of equations was evaluated by the percentage of subjects predicted within 10% of REE measured, the root mean squared prediction error (RMSE) and the mean percentage difference (bias) between predicted and measured REE.Results: Twenty-seven predictive equations (of which 9 based on FFM) were included. Validation was based on 536 F (18–71 year). Most accurate and precise for the Belgian women were the Huang, Siervo, Muller (FFM), Harris–Benedict (HB), and the Mifflin equation with 71%, 71%, 70%, 69%, and 68% accurate predictions, respectively; bias −1.7, −0.5, +1.1, +2.2, and −1.8%, RMSE 168, 170, 163, 167, and 173 kcal/d. The equations of HB and Mifflin are most widely used in clinical practice and both provide accurate predictions across a wide range of BMI groups. In an already overweight group the underpredicting Mifflin equation might be preferred. Above BMI 45 kg/m2, the Siervo equation performed best, while the FAO/WHO/UNU or Schofield equation should not be used in this extremely obese group.Conclusions: In Belgian women, the original Harris–Benedict or the Mifflin equation is a reliable tool to predict REE across a wide variety of body weight (BMI 18.5–50). Estimations for the BMI range between 30 and 40 kg/m2, however, should be improved.
DOCUMENT
Background: When the resting energy expenditure (REE) of overweight and obese adolescents cannot be measured by indirect calorimetry, it has to be predicted with an equation. Objective: The aim of this study was to examine the validity of published equations for REE compared with indirect calorimetry in overweight and obese adolescents. Design: Predictive equations based on weight, height, sex, age, fatfree mass (FFM), and fat mass were compared with measured REE. REE was measured by indirect calorimetry, and body composition was measured by dual-energy X-ray absorptiometry. The accuracy of the REE equations was evaluated on the basis of the percentage of adolescents predicted within 10% of REE measured, the mean percentage difference between predicted and measured values (bias), and the root mean squared prediction error (RMSE). Results: Forty-three predictive equations (of which 12 were based on FFM) were included. Validation was based on 70 girls and 51 boys with a mean age of 14.5 y and a mean (6SD) body mass index SD score of 2.93 6 0.45. The percentage of adolescents with accurate predictions ranged from 74% to 12% depending on the equation used. The most accurate and precise equation for these adolescents was the Molnar equation (accurate predictions: 74%; bias: –1.2%; RMSE: 174 kcal/d). The often-used Schofield-weight equation for age 10–18 y was not accurate (accurate predictions: 50%; bias: +10.7%; RMSE: 276 kcal/d). Conclusions: Indirect calorimetry remains the method of choice for REE in overweight and obese adolescents. However, the sex-specific Molnar REE prediction equation appears to be the most accurate for overweight and obese adolescents aged 12–18 y. This trial was registered at www.trialregister.nl with the Netherlands Trial Register as ISRCTN27626398.
DOCUMENT
Since 2016, it is mandatory for all future students at the department of Media, Information and Communication, to participate in a study choice test (SCT), prior their enrollment. However, the outcome is not binding and students are still entitled to enter the first year after receiving negative advice. With the help of a structural model, built for my PhD research, the predictive value of the SCT is tested by comparing the time it takes the students to finish all first year exams, their average grade point and attrition, against the results of the SCT. By using the structural model, various background variables are also measured, such as engagement, effort and commitment are also measured. By using the normed fit index (NFI), the comparative fit index (CFI), the Tucker-Lewis Index (TLI) and the root mean square error of approximation (RMSEA), the fit of the model is established. In addition, a comparison of the direct and indirect influence of the SCT will provide more knowledge about the correlations between the different variables, the SCT and ultimately student success.
DOCUMENT
Background & aims: Sarcopenia is defined as the age-related loss in muscle quantity and quality which is associated with physical disability. The assessment of muscle quantity plays a role in the diagnosis of sarcopenia. However, the methods used for this assessment have many disadvantages in daily practice and research, like high costs, exposure to radiation, not being portable, or doubtful reliability. Ultrasound has been suggested for the estimation of muscle quantity by estimating muscle mass, using a prediction equation based on muscle thickness. In this systematic review, we aimed to summarize the available evidence on existing prediction equations to estimate muscle mass and to assess whether these are applicable in various adult populations. Methods: The databases PubMed, PsycINFO, and Web of Science were used to search for studies predicting total or appendicular muscle mass using ultrasound. The methodological quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies, version 2 (QUADAS-2) and the quality assessment checklist (QA) designed by Pretorius and Keating (2008). Results: Twelve studies were included in this systematic review. The participants were between 18 and 79 years old. Magnetic Resonance Imaging and dual-energy X-ray absorptiometry were used as reference methods. The studies generally had low risk of bias and there were low concerns regarding the applicability (QUADAS-2). Nine out of eleven studies reached high quality on the QA. All equations were developed in healthy adults. Conclusions: The ultrasound-derived equations in the included articles are valid and applicable in a healthy population. For a Caucasian population we recommend to use the equation of Abe et al., 2015. While for an Asian population, we recommend to use the equation of Abe et al., 2018, for the South American population, the use of the equation of Barbosa-Silva et al., 2021 is the most appropriate.
LINK
Abstract: INTRODUCTION: Resting energy expenditure (REE) is expected to be higher in athletes because of their relatively high fat free mass (FFM). Therefore, REE predictive equation for recreational athletes may be required. The aim of this study was to validate existing REE predictive equations and to develop a new recreational athlete specific equation.
DOCUMENT
ObjectivesTo assess if nutritional interventions informed by indirect calorimetry (IC), compared to predictive equations, show greater improvements in achieving weight goals, muscle mass, strength, physical and functional performance.DesignQuasi-experimental study.Setting and ParticipantsGeriatric rehabilitation inpatients referred to dietitian.Intervention and MeasurementsPatients were allocated based on admission ward to either the IC or equation (EQ) group. Measured resting metabolic rate (RMR) by IC was communicated to the treating dietitian for the IC group but concealed for the EQ group. Achieving weight goals was determined by comparing individualised weight goals with weight changes from inclusion to discharge (weight gain/loss: >2% change, maintenance: ≤2%). Muscle mass, strength, physical and functional performance were assessed at admission and discharge. Food intake was assessed twice over three-days at inclusion and before discharge using plate waste observation.ResultsFifty-three patients were included (IC n=22; EQ n=31; age: 84.3±8.4 years). The measured RMR was lower than the estimated RMR within both groups [mean difference IC −282 (95%CI −490;−203), EQ −273 (−381;−42) kcal/day)] and comparable between-groups (median IC 1271 [interquartile range 1111;1446] versus EQ 1302 [1135;1397] kcal/day, p=0.800). Energy targets in the IC group were lower than the EQ group [mean difference −317 (95%CI −479;−155) kcal/day]. There were no between-group differences in energy intake, achieving weight goals, changes in muscle mass, strength, physical and functional performance.ConclusionsIn geriatric rehabilitation inpatients, nutritional interventions informed by IC compared to predictive equations showed no greater improvement in achieving weight goals, muscle mass, strength, physical and functional performance. IC facilitates more accurate determination of energy targets in this population. However, evidence for the potential benefits of its use in nutrition interventions was limited by a lack of agreement between patients’ energy intake and energy targets.
MULTIFILE
First year undergraduate students at the Amsterdam University of Applied Sciences of two different departments, were asked to join self-reported surveys in two succeeding years. Along with background variables, effort and commitment, the surveys asked elements of engagement. The later was analysed with factor analysis. The data of the surveys together with the results of the exams from the first year, were investigated to find out if the mandatory study choice test (SCT) taken before entering the faculty, had any predictive effect on their success. Not only basic statistical analysis like correlation was performed, but also more advanced analysis such as structural equation modelling (SEM) was used to uncover the value of the SCT. After a model was built, the normed fit index (NFI), the comparative fit index (CFI), the Tucker-Lewis Index (TLI) and the root mean square error of approximation (RMSEA), were used to determine the fit of the model. By comparing the influence of the variables on the SCT, the benefits of the latter will be determined and ultimately enhance the knowledge about influences upon student success in higher education.
DOCUMENT
A transition of today’s energy system towards renewableresources, requires solutions to match renewable energy generationwith demand over time. These solutions include smartgrids, demand-side management and energy storage. Energycan be stored during moments of overproduction of renewableenergy and used from the storage during moments ofinsufficient production. Allocation in real time of generatedenergy towards controlled appliances or storage chargers, isdone by a smart control system which makes decisions basedon predictions (of upcoming generation and demand) andinformation of the actual condition of storages.
MULTIFILE
Rationale: Predictive equations for resting energy expenditure (REE) are used in the treatment of overweight and obesity, but the validity of these equations in overweight older adults is unknown. This study evaluates which predictive REE equation is the best alternative to indirect calorimetry in overweight older adults with and without diabetes. Methods: In total 273 adults aged ≥55 years with a BMI of ≥25 kg/m2 were included. REE (by indirect calorimetry), body weight, body height, age, gender, and fat-free and fat mass (from air-displacement plethysmography) were measured. The measured REE was used as a reference and compared with 28 existing REE equations. The accuracy of the equations was evaluated by the percentage accurate predictions (within 10% of REE measured), the root mean squared error (RMSE), and the mean percentage difference (bias) between predicted and measured REE. Subgroup analyses were performed for type 2 diabetics (T2D) and non-T2D. Results: Mean age was 64 ± (SD 6) years, 42% had T2D (n = 116), and mean BMI was 32.8 ± (SD 4.5) with range 25–54 kg/m2. The adjusted Harris & Benedict (1984) provided the highest percentage accurate predictions in all adults (70%) and in T2D (74%), and second best in non-T2D (67%). RMSE was 184, 175 and 191 kcal/day, and bias −1.2%, −1.5% and −1.0% for all adults, T2D and non-T2D, respectively. Conclusion: For Dutch overweight older adults with and without diabetes the adjusted Harris–Benedict (1984) predictive equation for REE seems to be the best alternative to indirect calorimetry.
DOCUMENT
We present a simple analytical formalism based on the Lorentz-Scherrer equation and Bernoulli statistics for estimating the fraction of crystallites (and the associated uncertainty parameters) contributing to all finite Bragg peaks of a typical powder pattern obtained from a static polycrystalline sample. We test and validate this formalism using numerical simulations, and show that they can be applied to experiments using monochromatic or polychromatic (pink-beam) radiation. Our results show that enhancing the sampling efficiency of a given powder diffraction experiment for such samples requires optimizing the sum of the multiplicities of reflections included in the pattern along with the wavelength used in acquiring the pattern. Utilizing these equations in planning powder diffraction experiments for sampling efficiency is also discussed.
DOCUMENT