Sleep quality and maintenance of the optimal cognitive functioning is of crucial importance for aviation safety. Fatigue Risk Management (FRM) enables the operator to achieve the objectives set in their safety and FRM policies. As in any other risk management cycle, the FRM value can be realized by deploying suitable tools that aid robust decision-making. For the purposes of our article, we focus on fatigue hazard identification to explore the possible developments forward through the enhancement of objective tools in air transport operators. To this end we compare subjective and objective tools that could be employed by an FRM system. Specifically, we focus on an exploratory survey on 120 pilots and the analysis of 250 fatigue reports that are compared with objective fatigue assessment based on the polysomnographic (PSG) and neurocognitive assessment of three experimental cases. We highlight the significance of predictive objective tools that should be deployed by contemporary FRM models. We also report the need for utilization of scientific-based tools for predictive FRM, in which objective sleep quality and neurocognitive assessment should be the core aspect. We note the period of restructuring ahead as an opportunity for operators to rethink and restructure their FRM.
DOCUMENT
In recent years, a step change has been seen in the rate of adoption of Industry 4.0 technologies by manufacturers and industrial organizations alike. This article discusses the current state of the art in the adoption of Industry 4.0 technologies within the construction industry. Increasing complexity in onsite construction projects coupled with the need for higher productivity is leading to increased interest in the potential use of Industry 4.0 technologies. This article discusses the relevance of the following key Industry 4.0 technologies to construction: data analytics and artificial intelligence, robotics and automation, building information management, sensors and wearables, digital twin, and industrial connectivity. Industrial connectivity is a key aspect as it ensures that all Industry 4.0 technologies are interconnected allowing the full benefits to be realized. This article also presents a research agenda for the adoption of Industry 4.0 technologies within the construction sector, a three-phase use of intelligent assets from the point of manufacture up to after build, and a four-staged R&D process for the implementation of smart wearables in a digital enhanced construction site.
DOCUMENT
Stroke is the second most common cause of death and the third leading cause of disability worldwide,1,2 with the burden expected to increase during the next 20 years.1 Almost 40% of the people with stroke have a recurrent stroke within 10 years,3 making secondary prevention vital.3,4 High amounts of sedentary time have been found to increase the risk of cardiovascular disease,5–11 particularly when the sedentary time is accumulated in prolonged bouts.12–15 Sedentary behavior, is defined as “any waking behavior characterized by an energy expenditure ≤1.5 Metabolic Equivalent of Task (METs) while in a sitting, reclining or lying posture”.16,17 Studies in healthy people, as well as people with diabetes and obesity, have shown that reducing the total amount of sedentary time and/or breaking up long periods of uninterrupted sedentary time, reduces metabolic risk factors associated with cardiovascular disease.6,9,10,12–15 Recent studies have shown that people living in the community after stroke spend more time each day sedentary, and more time in uninterrupted bouts of sedentary time compared to age-matched healthy peers.18–20 Reducing sedentary time and breaking up long sedentary bouts with short bursts of activity may be a promising intervention to reduce the risk of recurrent stroke and other cardiovascular diseases in people with stroke. To develop effective interventions, it is important to understand the factors associated with sedentary time in people with stroke. Previous studies have found associations between self-reported physical function after stroke and total sedentary time, but inconsistent results with regards to the relationship of age, stroke severity, and walking speed with sedentary time.20,21 These results are from secondary analyses of single-site observational studies, not powered to address associations, and inconsistent in the methods used to determine waking hours; thus making direct comparisons between studies difficult.20,21 Individual participant data pooling, with consistent processing of wake time data, allows novel exploratory analyses of larger datasets with greater power. By pooling all available individual participant data internationally, this study aimed to comprehensively explore the factors associated with sedentary time in community-dwelling people with stroke. Specifically, our research questions were: (1) What factors are associated with total sedentary time during waking hours after stroke? (2) What factors are associated with time spent in prolonged sedentary bouts during waking hours?
DOCUMENT