Abstract Purpose To determine the predictive value of quality of life for mortality at the domain and item levels. Methods This longitudinal study was carried out in a sample of 479 Dutch people aged 75 years or older living independently, using a follow-up of 7 years. Participants completed a self-report questionnaire. Quality of life was assessed with the WHOQOL-BREF, including four domains: physical health, psychological, social relationships, and environment. The municipality of Roosendaal (a town in the Netherlands) indicated the dates of death of the individuals. Results Based on mean, all quality of life domains predicted mortality adjusted for gender, age, marital status, education, and income. The hazard ratios ranged from 0.811 (psychological) to 0.933 (social relationships). The areas under the curve (AUCs) of the four domains were 0.730 (physical health), 0.723 (psychological), 0.693 (social relationships), and 0.700 (environment). In all quality of life domains, at least one item predicted mortality (adjusted). Conclusion Our study showed that all four quality of life domains belonging to the WHOQOL-BREF predict mortality in a sample of Dutch community-dwelling older people using a follow-up period of 7 years. Two AUCs were above threshold (psychological, physical health). The findings offer health care and welfare professionals evidence for conducting interventions to reduce the risk of premature death.
Data-driven condition-based maintenance (CBM) and predictive maintenance (PdM) strategies have emerged over recent years and aim at minimizing the aviation maintenance costs and environmental impact by the diagnosis and prognosis of aircraft systems. As the use of data and relevant algorithms is essential to AI-based gas turbine diagnostics, there are different technical, operational, and regulatory challenges that need to be tackled in order for the aeronautical industry to be able to exploit their full potential. In this work, the machine learning (ML) method of the generalised additive model (GAM) is used in order to predict the evolution of an aero engine’s exhaust gas temperature (EGT). Three different continuous synthetic data sets developed by NASA are employed, known as New Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS), with increasing complexity in engine deterioration. The results show that the GAM can be predict the evolution of the EGT with high accuracy when using several input features that resemble the types of physical sensors installed in aero gas turbines currently in operation. As the GAM offers good interpretability, this case study is used to discuss the different data attributes a data set needs to have in order to build trust and move towards certifiable models in the future.
Objective: To predict mortality with the Tilburg Frailty Indicator (TFI) in a sample of community-dwelling older people, using a follow-up of 7 years. Setting and Participants: 479 Dutch community-dwelling people aged 75 years or older. Measurements: The TFI, a self-report questionnaire, was used to collect data about total, physical, psychological, and social frailty. The municipality of Roosendaal (a town in the Netherlands) provided the mortality dates. Conclusions and Implications: This study has shown the predictive validity of the TFI for mortality in community-dwelling older people. Our study demonstrated that physical and psychological frailty predicted mortality. Of the individual TFI components, difficulty in walking consistently predicted mortality. For identifying frailty, using the integral instrument is recommended because total, physical, psychological, and social frailty and its components have proven their value in predicting adverse outcomes of frailty, for example, increase in health care use and a lower quality of life.
MULTIFILE