The anthocyanin composition of five purple leaves cultivars of Ocimum basilicum L. was investigated by reversed-phase HPLC with mass-spectrometric detection by ESI mode with ion partial fragmentation as well as preparation of dried differently colored forms of anthocyanins encapsulated into maltodextrinmatrix. Analysis of the mass spectra revealed that according to the chromatographic profile the set of basil cultivar anthocyanins under investigation may be divided into two groups with the common feature being ahigh level of acylation with (mainly) p-coumaric, ferulic and malonic acids of the same base: cyanidin-3-dihexoside-5-hexoside. The presence of acylation with substituted cinnamic acids permits us to obtain solutions not only with a red color (the property of the flavylium form) but also with blue shades of coloration due to quinonoid and negatively charged quinonoid forms. All forms except that of flavylium are not stable in solution but stable enough to prepare dried encapsulated forms by lyophilization. Although the loss of anthocyaninswith drying is not negligible, the final product is characterized with high stability for storage in a refrigerator.
This study (re)tests the relationship between planning and transfer success. Previous studies show that planning increases satisfaction, but find no or only weak relations to transfer effectiveness. 76 Dutch SME business owners, who succeeded in the transfer, were surveyed. To improve on previous studies reliable scales were constructed and results were tested for common method bias, social desirable answering and nonresponse. Multi regression analyses indicate that planning and preparation does relate to satisfaction but has no relation with performance. To predict effectiveness of SME transfers both the market and entrepreneurial abilities of the buyer seem more appealing.
Our unilateral diet has resulted in a deficiency of specific elements/components needed for well-functioning of the human body. Especially the element magnesium is low in our processed food and results in neuronal and muscular malfunctioning, problems in bone heath/strength, and increased chances of diabetes, depression and cardiovascular diseases. Furthermore, it has also been recognized that magnesium plays an important role in cognitive functioning (impairment and enhancement), especially for people suffering from neurodegenerative diseases (Parkinson disease, Alzheimer, etc). Recently, it has been reported that magnesium addition positively effects sleep and calmness (anti-stress). In order to increase the bioavailability of magnesium cations, organic acids such as citrate, glycerophosphate and glycinate are often used as counterions. However, the magnesium supplements that are currently on the market still suffer from low bio-availability and often do not enter the brain significantly.The preparation of dual/multiple ligands of magnesium in which the organic acid not only functions as a carrier but also has synergistically/complementary biological effects is widely unexplored and needs further development. As a result, there is a strong need for dual/multiple magnesium supplements that are non-toxic, stable, prepared via an economically and ecologically attractive route, resulting in high bioavailability of magnesium in vivo, preferably positively influencing cognition/concentration
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
Goal: In 2030 the availability of high quality and fit-for-purpose recycled plastics has been significantly increased by implementation of InReP’s main result: Development of technologies in sorting, mechanical and chemical recycling that make high quality recycled plastics available for the two dominating polymer types; polyolefins (PE/PP) and PET. Results: Our integrated approach in the recycling of plastics will result in systemic (R1) and technological solutions for sorting & washing of plastic waste (R2), mechanical (R3) and chemical recycling (R4, R6) and upcycling (R5, R7) of polyolefins (PE & PP) and polyesters (PET). The obtained knowledge on the production of high quality recycled plastics can easily be transferred to the recycling of other plastic waste streams. Furthermore, our project aims to progress several processes (optimized sorting and washing, mechanical recycling of PP/PE, glycolysis of PET, naphtha from PP/PE and preparation of valuable monomers from PP/PET) to prototype and/or improved performance at existing pilot facilities. Our initiative will boost the attractiveness of recycling, contribute to the circular transition (technical, social, economic), increase the competitiveness of companies involved within the consortium and encourage academic research and education within this field.