Background: Nurses and nursing students experienced an emotional burden while working during the COVID-19 outbreak. During the COVID-19 outbreak three questions for nurses working under these extreme circumstances were formulated: 1. What today’s events do you remember? 2. How do you feel (physically and mentally)? 3. Do you have enough support? The purpose of this study was to obtain insight into whether nurses and nursing students perceive that the use of the three-questions-method contributes to effective coping with the emotional burden during the COVID-19 outbreak. Methods: Focus group interviews were held with hospital nurses (n = 11) and nursing students with internships in mental health care (n = 2), hospital (n = 9), and homecare/nursing home care (n = 3) in September 2020 followed by twenty semi-structured interviews one year later. Results: Almost all nurses and nursing students named factors that contributed to the emotional burden: fear, powerlessness, frustration, lack of knowledge about COVID-19, and pressure to pass the internship. Participants indicated that using the three-questions-method can help to effectively cope with the emotional burden during and after the COVID-19 outbreak. Conclusions: Using the three-questions-method offers added value in coping with emotional burden and can be used in education as well as in practice.
LINK
BACKGROUND: Increasing evidence indicates the potential benefits of restricted fluid management in critically ill patients. Evidence lacks on the optimal fluid management strategy for invasively ventilated COVID-19 patients. We hypothesized that the cumulative fluid balance would affect the successful liberation of invasive ventilation in COVID-19 patients with acute respiratory distress syndrome (ARDS).METHODS: We analyzed data from the multicenter observational 'PRactice of VENTilation in COVID-19 patients' study. Patients with confirmed COVID-19 and ARDS who required invasive ventilation during the first 3 months of the international outbreak (March 1, 2020, to June 2020) across 22 hospitals in the Netherlands were included. The primary outcome was successful liberation of invasive ventilation, modeled as a function of day 3 cumulative fluid balance using Cox proportional hazards models, using the crude and the adjusted association. Sensitivity analyses without missing data and modeling ARDS severity were performed.RESULTS: Among 650 patients, three groups were identified. Patients in the higher, intermediate, and lower groups had a median cumulative fluid balance of 1.98 L (1.27-7.72 L), 0.78 L (0.26-1.27 L), and - 0.35 L (- 6.52-0.26 L), respectively. Higher day 3 cumulative fluid balance was significantly associated with a lower probability of successful ventilation liberation (adjusted hazard ratio 0.86, 95% CI 0.77-0.95, P = 0.0047). Sensitivity analyses showed similar results.CONCLUSIONS: In a cohort of invasively ventilated patients with COVID-19 and ARDS, a higher cumulative fluid balance was associated with a longer ventilation duration, indicating that restricted fluid management in these patients may be beneficial. Trial registration Clinicaltrials.gov ( NCT04346342 ); Date of registration: April 15, 2020.
During crime scene investigations, numerous traces are secured and may be used as evidence for the evaluation of source and/or activity level propositions. The rapid chemical analysis of a biological trace enables the identification of body fluids and can provide significant donor profiling information, including age, sex, drug abuse, and lifestyle. Such information can be used to provide new leads, exclude from, or restrict the list of possible suspects during the investigative phase. This paper reviews the state-of-the-art labelling techniques to identify the most suitable visual enhancer to be implemented in a lateral flow immunoassay setup for the purpose of trace identification and/or donor profiling. Upon comparison, and with reference to the strengths and limitations of each label, the simplistic one-step analysis of noncompetitive lateral flow immunoassay (LFA) together with the implementation of carbon nanoparticles (CNPs) as visual enhancers is proposed for a sensitive, accurate, and reproducible in situ trace analysis. This approach is versatile and stable over different environmental conditions and external stimuli. The findings of the present comparative analysis may have important implications for future forensic practice. The selection of an appropriate enhancer is crucial for a well-designed LFA that can be implemented at the crime scene for a time- and cost-efficient investigation.
To optimize patient care, it is vital to prevent infections in healthcare facilities. In this respect, the increasing prevalence of antibiotic-resistant bacterial strains threatens public healthcare. Current gold standard techniques are based on classical microbiological assays that are time consuming and need complex expensive lab environments. This limits their use for high throughput bacterial screening to perform optimal hygiene control. The infection prevention workers in hospitals and elderly nursing homes underline the urgency of a point-of-care tool that is able to detect bacterial loads on-site in a fast, precise and reliable manner while remaining with the available budgets. The aim of this proposal titled SURFSCAN is to develop a novel point-of-care tool for bacterial load screening on various surfaces throughout the daily routine of professionals in healthcare facilities. Given the expertise of the consortium partners, the point-of-care tool will be based on a biomimetic sensor combining surface imprinted polymers (SIPs), that act as synthetic bacterial receptors, with a thermal read-out strategy for detection. The functionality and performance of this biomimetic sensor has been shown in lab conditions and published in peer reviewed journals. Within this proposal, key elements will be optimized to translate the proof of principle concept into a complete clinical prototype for on-site application. These elements are essential for final implementation of the device as a screening and assessment tool for scanning bacterial loads on surfaces by hospital professionals. The research project offers a unique collaboration among different end-users (hospitals and SMEs), and knowledge institutions (Zuyd University of Applied Sciences, Fontys University of Applied Sciences and Maastricht Science Programme, IDEE-Maastricht University), which guarantees transfer of fundamental knowledge to the market and end-user needs.