Background: The worldwide increase in the rates of childhood overweight and physical inactivity requires successful prevention and intervention programs for children. The aim of the Active Living project is to increase physical activity and decrease sedentary behavior of Dutch primary school children by developing and implementing tailored, multicomponent interventions at and around schools. Methods/design: In this project, school-centered interventions have been developed at 10 schools in the south of the Netherlands, using a combined top-down and bottom-up approach in which a research unit and a practice unit continuously interact. The interventions consist of a combination of physical and social interventions tailored to local needs of intervention schools. The process and short- and long-term effectiveness of the interventions will be evaluated using a quasi-experimental study design in which 10 intervention schools are matched with 10 control schools. Baseline and follow-up measurements (after 12 and 24 months) have been conducted in grades 6 and 7 and included accelerometry, GPS, and questionnaires. Primary outcome of the Active Living study is the change in physical activity levels, i.e. sedentary behavior (SB), light physical activity (LPA), moderate-to-vigorous physical activity (MVPA), and counts-per-minute (CPM). Multilevel regression analyses will be used to assess the effectiveness of isolated and combined physical and social interventions on children’s PA levels. Discussion: The current intervention study is unique in its combined approach of physical and social environmental PA interventions both at school(yard)s as well as in the local neighborhood around the schools. The strength of the study lies in the quasi-experimental design including objective measurement techniques, i.e. accelerometry and GPS, combined with more subjective techniques, i.e. questionnaires, implementation logbooks, and neighborhood observations. LinkedIn: https://www.linkedin.com/in/sanned/
BackgroundThe relative number of children meeting the minimal required dose of daily physical activity remains execrably low. It has been estimated that in 2015 one out of five children will be overweight. Therefore, low levels of physical activity during early childhood may compromise the current and future health and well-being of the population, and promoting physical activity in younger children is a major public health priority. This study is to gain insight into effects of a Physical Education based playground program on the PA levels during recess in primary school children aged 6-12.Methods/designThe effectiveness of the intervention program will be evaluated using a prospective controlled trial design in which schools will be matched, with a follow-up of one school year. The research population will consist of 6-12 year old primary school children. The intervention program will be aimed at improving physical activity levels and will consist of a multi-component alteration of the schools' playground. In addition, playground usage will be increased through altered time management of recess times, as well as a modification of the Physical Education content.DiscussionThe effects of the intervention on physical activity levels during recess (primary outcome measure), overall daily physical activity and changes in physical fitness (secondary outcome measures) will be assessed. Results of this study could possibly lead to changes in the current playground system of primary schools and provide structured health promotion for future public health.Trial registrationNetherlands Trial Register (NTR): NTR2386
We are in the process of preparing a teaching experiment on robotics in primary schools. In relation to this, we investigate in this paper whether it is possible to prepare teachers adequately to implement the intended pedagogy with the help of an in-service teacher education course that we developed. In view of the forthcoming teaching experiment, we were especially interested in the content and character of the knowledge, insights and attitudes of the teachers. We therefore capitalized on qualitative measures. We report how teachers developed the required knowledge and skills in three domains, i.e. subject matter knowledge, pedagogical knowledge, and pedagogical content knowledge. We examined whether teachers were able to accommodate the content knowledge, concepts and approaches we proposed, whether they developed a personalized version of pedagogical content knowledge, and whether they increased their pedagogic ability with respect to scaffolding pupils' learning of robotics. We draw some conclusions with regard to the professional development of primary school teachers in areas of science and technology with which they in general are unfamiliar.