In this thesis several studies are presented that have targeted decision making about case management plans in probation. In a case management plan probation officers describe the goals and interventions that should help offenders stop reoffending, and the specific measures necessary to reduce acute risks of recidivism and harm. Such a plan is embedded in a judicial framework, a sanction or advice about the sanction in which these interventions and measures should be executed. The topic of this thesis is the use of structured decision support, and the question is if this can improve decision making about case management plans in probation and subsequently improve the effectiveness of offender supervision. In this chapter we first sketch why structured decision making was introduced in the Dutch probation services. Next we describe the instrument for risk and needs assessment as well as the procedure to develop case management plans that are used by the Dutch probation services and that are investigated in this thesis. Then we describe the setting of the studies and the research questions, and we conclude with an overview of this thesis.
An effective implementation approach is crucial for successful integration of structured risk assessment instruments into practice. This qualitative study explored barriers and facilitators to the implementation of the Short-Term Assessment of Risk and Treatability: Adolescent Version (START:AV) in a Dutch residential youth care service. Perceptions of staff members from various disciplines were gathered through focus group interviews at three consecutive occasions. After inductive coding of the interview extracts using thematic analysis, the identified codes were linked to the consolidated framework for implementation research. Through this framework, factors that influence an implementation project can be organized into multiple domains and constructs. In the present study, staff members described implementation barriers related to characteristics of the risk assessment instrument, staff, and the implementation process. In addition, features of the setting were frequently mentioned as hindering the implementation, such as hierarchy, culture, communication, as well as implementation climate and readiness for change. Staff members also identified multiple facilitators, such as experienced advantages of the START:AV compared to the previous risk assessment practice and positive beliefs about the instrument. The article concludes with recommendations for successful implementation of structured risk assessment instruments in forensic-clinical practice.
Aims and objectives: To describe the process of implementing evidence-based practice (EBP) in a clinical nursing setting. Background: EBP has become a major issue in nursing, it is insufficiently integrated in daily practice and its implementation is complex. Design: Participatory action research. Method: The main participants were nurses working in a lung unit of a rural hospital. A multi-method process of data collection was used during the observing, reflecting, planning and acting phases. Data were continuously gathered during a 24-month period from 2010 to 2012, and analysed using an interpretive constant comparative approach. Patients were consulted to incorporate their perspective. Results: A best-practice mode of working was prevalent on the ward. The main barriers to the implementation of EBP were that nurses had little knowledge of EBP and a rather negative attitude towards it, and that their English reading proficiency was poor. The main facilitators were that nurses wanted to deliver high-quality care and were enthusiastic and open to innovation. Implementation strategies included a tailored interactive outreach training and the development and implementation of an evidence-based discharge protocol. The academic model of EBP was adapted. Nurses worked according to the EBP discharge protocol but barely recorded their activities. Nurses favourably evaluated the participatory action research process. Conclusions: Action research provides an opportunity to empower nurses and to tailor EBP to the practice context. Applying and implementing EBP is difficult for front-line nurses with limited EBP competencies. Relevance to clinical practice: Adaptation of the academic model of EBP to a more pragmatic approach seems necessary to introduce EBP into clinical practice. The use of scientific evidence can be facilitated by using pre-appraised evidence. For clinical practice, it seems relevant to integrate scientific evidence with clinical expertise and patient values in nurses’ clinical decision making at the individual patient level.
Horticulture crops and plants use only a limited part of the solar spectrum for their growth, the photosynthetically active radiation (PAR); even within PAR, different spectral regions have different functionality for plant growth, and so different light spectra are used to influence different properties of the plant, such as leaves, fruiting, longer stems and other plant properties. Artificial lighting, typically with LEDs, has been used to provide these specified spectra per plant, defined by their light recipe. This light is called steering light. While the natural sunlight provides a much more sustainable and abundant form of energy, however, the solar spectrum is not tuned towards specific plant needs. In this project, we capitalize on recent breakthroughs in nanoscience to optimally shape the solar spectrum, and produce a spectrally selective steering light, i.e. convert the energy of the entire solar spectrum into a spectrum most useful for agriculture and plant growth to utilize the sustainable solar energy to its fullest, and save on artificial lighting and electricity. We will take advantage of the developed light recipes and create a sustainable alternative to LED steering light, using nanomaterials to optimally shape the natural sunlight spectrum, while maintaining the increased yields. As a proof of concept, we are targeting the compactness of ornamental plants and seek to steer the plants’ growth to reduce leaf extension and thus be more valuable. To realize this project the Peter Schall group at the UvA leads this effort together with the university spinout, SolarFoil, whose expertise lies in the development of spectral conversion layers for horticulture. Renolit - a plastic manufacturer and Chemtrix, expert in flow synthesis, provide expertise and technical support to scale the foil, while Ludvig-Svensson, a pioneer in greenhouse climate screens, provides the desired light specifications and tests the foil in a controlled setting.