Proper decision-making is one of the most important capabilities of an organization. Therefore, it is important to have a clear understanding and overview of the decisions an organization makes. A means to understanding and modeling decisions is the Decision Model and Notation (DMN) standard published by the Object Management Group in 2015. In this standard, it is possible to design and specify how a decision should be taken. However, DMN lacks elements to specify the actors that fulfil different roles in the decision-making process as well as not taking into account the autonomy of machines. In this paper, we re-address and-present our earlier work [1] that focuses on the construction of a framework that takes into account different roles in the decision-making process, and also includes the extent of the autonomy when machines are involved in the decision-making processes. Yet, we extended our previous research with more detailed discussion of the related literature, running cases, and results, which provides a grounded basis from which further research on the governance of (semi) automated decision-making can be conducted. The contributions of this paper are twofold; 1) a framework that combines both autonomy and separation of concerns aspects for decision-making in practice while 2) the proposed theory forms a grounded argument to enrich the current DMN standard.
One major drawback of deception detection is its vulnerability to countermeasures, whereby participants wilfully modulate their physiological or neurophysiological response to critical guilt-determining stimuli. One reason for this vulnerability is that stimuli are usually presented slowly. This allows enough time to consciously apply countermeasures, once the role of stimuli is determined. However, by increasing presentation speed, stimuli can be placed on the fringe of awareness, rendering it hard to perceive those that have not been previously identified, hindering the possibility to employ countermeasures. We tested an identity deception detector by presenting first names in Rapid Serial Visual Presentation and instructing participants to lie about their own identity. We also instructed participants to apply a series of countermeasures. The method proved resilient, remaining effective at detecting deception under all countermeasures.
MULTIFILE
In this chapter it is argued that self-direction is currently well above the head of the majority of youngsters and even of many adults. Evidence for this conclusion stems from developmental and brain research. However, for various reasons it is important that people develop the competences that are necessary for self-direction. To what degree is it possible to develop these competences? Are they 'learnable'? What can education contribute?