Since 1990, natural hazards have led to over 1.6 million fatalities globally, and economic losses are estimated at an average of around USD 260–310 billion per year. The scientific and policy communities recognise the need to reduce these risks. As a result, the last decade has seen a rapid development of global models for assessing risk from natural hazards at the global scale. In this paper, we review the scientific literature on natural hazard risk assessments at the global scale, and we specifically examine whether and how they have examined future projections of hazard, exposure, and/or vulnerability. In doing so, we examine similarities and differences between the approaches taken across the different hazards, and we identify potential ways in which different hazard communities can learn from each other. For example, there are a number of global risk studies focusing on hydrological, climatological, and meteorological hazards that have included future projections and disaster risk reduction measures (in the case of floods), whereas fewer exist in the peer-reviewed literature for global studies related to geological hazards. On the other hand, studies of earthquake and tsunami risk are now using stochastic modelling approaches to allow for a fully probabilistic assessment of risk, which could benefit the modelling of risk from other hazards. Finally, we discuss opportunities for learning from methods and approaches being developed and applied to assess natural hazard risks at more continental or regional scales. Through this paper, we hope to encourage further dialogue on knowledge sharing between disciplines and communities working on different hazards and risk and at different spatial scales.
DOCUMENT
It is important for caregivers and patients to know which wounds are at risk of prolonged wound healing to enable timely communication and treatment. Available prognostic models predict wound healing in chronic ulcers, but not in acute wounds, that is, originating after trauma or surgery. We developed a model to detect which factors can predict (prolonged) healing of complex acute wounds in patients treated in a large wound expertise centre (WEC). Using Cox and linear regression analyses, we determined which patient- and wound-related characteristics best predict time to complete wound healing and derived a prediction formula to estimate how long this may take. We selected 563 patients with acute wounds, documented in the WEC registry between 2007 and 2012. Wounds had existed for a median of 19 days (range 6-46 days). The majority of these were located on the leg (52%). Five significant independent predictors of prolonged wound healing were identified: wound location on the trunk [hazard ratio (HR) 0·565, 95% confidence interval (CI) 0·405-0·788; P = 0·001], wound infection (HR 0·728, 95% CI 0·534-0·991; P = 0·044), wound size (HR 0·993, 95% CI 0·988-0·997; P = 0·001), wound duration (HR 0·998, 95% CI 0·996-0·999; P = 0·005) and patient's age (HR 1·009, 95% CI 1·001-1·018; P = 0·020), but not diabetes. Awareness of the five factors predicting the healing of complex acute wounds, particularly wound infection and location on the trunk, may help caregivers to predict wound healing time and to detect, refer and focus on patients who need additional attention.
DOCUMENT
IMPORTANCE: Sarcopenia and obesity are 2 global concerns associated with adverse health outcomes in older people. Evidence on the population-based prevalence of the combination of sarcopenia with obesity (sarcopenic obesity [SO]) and its association with mortality are still limited.OBJECTIVE: To investigate the prevalence of sarcopenia and SO and their association with all-cause mortality.DESIGN, SETTING, AND PARTICIPANTS: This large-scale, population-based cohort study assessed participants from the Rotterdam Study from March 1, 2009, to June 1, 2014. Associations of sarcopenia and SO with all-cause mortality were studied using Kaplan-Meier curves, Cox proportional hazards regression, and accelerated failure time models fitted for sex, age, and body mass index (BMI). Data analysis was performed from January 1 to April 1, 2023.EXPOSURES: The prevalence of sarcopenia and SO, measured based on handgrip strength and body composition (BC) (dual-energy x-ray absorptiometry) as recommended by current consensus criteria, with probable sarcopenia defined as having low handgrip strength and confirmed sarcopenia and SO defined as altered BC (high fat percentage and/or low appendicular skeletal muscle index) in addition to low handgrip strength.MAIN OUTCOME AND MEASURE: The primary outcome was all-cause mortality, collected using linked mortality data from general practitioners and the central municipal records, until October 2022.RESULTS: In the total population of 5888 participants (mean [SD] age, 69.5 [9.1] years; mean [SD] BMI, 27.5 [4.3]; 3343 [56.8%] female), 653 (11.1%; 95% CI, 10.3%-11.9%) had probable sarcopenia and 127 (2.2%; 95% CI, 1.8%-2.6%) had confirmed sarcopenia. Sarcopenic obesity with 1 altered component of BC was present in 295 participants (5.0%; 95% CI, 4.4%-5.6%) and with 2 altered components in 44 participants (0.8%; 95% CI, 0.6%-1.0%). An increased risk of all-cause mortality was observed in participants with probable sarcopenia (hazard ratio [HR], 1.29; 95% CI, 1.14-1.47) and confirmed sarcopenia (HR, 1.93; 95% CI, 1.53-2.43). Participants with SO plus 1 altered component of BC (HR, 1.94; 95% CI, 1.60-2.33]) or 2 altered components of BC (HR, 2.84; 95% CI, 1.97-4.11) had a higher risk of mortality than those without SO. Similar results for SO were obtained for participants with a BMI of 27 or greater.CONCLUSIONS AND RELEVANCE: In this study, sarcopenia and SO were found to be prevalent phenotypes in older people and were associated with all-cause mortality. Additional alterations of BC amplified this risk independently of age, sex, and BMI. The use of low muscle strength as a first step of both diagnoses may allow for early identification of individuals at risk for premature mortality.
DOCUMENT