Climate change calls for an energy transition utilizing all available renewable energy resources, such as bioenergy from biomass. However, the use of biomass is debated in society, and public acceptance is low or lacking. This survey-based research demonstrates for the first time that public acceptance of bioenergy hinges on (a) the type of biomass feedstock used to generate bioenergy and (b) the perceptions of the effectiveness of bioenergy in contributing to the energy transition. A survey-embedded vignette experiment (with 409 Dutch participants) shows that public acceptance of the biomass feedstocks 'wood' and 'energy crops' is significantly lower than the acceptance of 'organic waste' and 'manure' for bioenergy. These results indicate that the biomass feedstock type should be more carefully considered and specified in future research and communication on public acceptance of bioenergy. Thematic coding and bootstrapped mediation analyses identified the perceived effectivity of bioenergy in contributing to the energy transition as a prime explanatory (i.e., mediating) variable for acceptance. A subsequent message-framing communication experiment (with 414 Dutch participants) demonstrates that emphasizing biomass feedstock as a form of waste utilization is a frame that helps to increase public acceptance of bioenergy. The waste utilization frame notably improves the perceptions of the effectiveness of bioenergy as contributing to the energy transition for the two lesser accepted biomass feedstocks. The emphasis on biomass feedstock type as a form of waste treatment can improve strategic communications on bioenergy and foster wider public acceptance of bioenergy in the transition toward a more sustainable energy system.
DOCUMENT
Vegetables have low taste intensities, which might contribute to low acceptance. The aim of this study was to investigate the effect of taste (sweetness, sourness, bitterness, umami, and saltiness) and fattiness enhancement on consumer acceptance of cucumber and green capsicum purees. Three concentrations of sugar, citric acid, caffeine, mono-sodium glutamate, NaCl, and sunflower oil were added to pureed cucumber and green capsicum. Subjects (n = 66,35.6 ± 17.7 y) rated taste and fattiness intensity. Different subjects (n = 100, 33.2 ± 16.5 years) evaluated acceptance of all pureed vegetables. Taste intensities of vegetable purees were significantly different (P < 0.05) between the three tastant concentrations except for umami in both vegetable purees, sourness in green capsicum puree, and fattiness in cucumber puree. Only enhancement of sweetness significantly (P < 0.05) increased acceptance of both vegetable purees compared to unmodified purees. In cucumber purees, relatively small amounts of added sucrose (2%) increased acceptance already significantly, whereas in green capsicum acceptance increased significantly only with addition of 5% sucrose. Enhancement of other taste modalities did not significantly increase acceptance of both vegetable purees. Enhancing saltiness and bitterness significantly decreased acceptance of both vegetable purees. We conclude that the effect of taste enhancement on acceptance of vegetable purees differs between tastants and depends on tastant concentration and vegetable type. With the exception of sweetness, taste enhancement of taste modalities such as sourness, bitterness, umami, and saltiness was insufficient to increase acceptance of vegetable purees. We suggest that more complex taste, flavor, or texture modifications are required to enhance acceptance of vegetables.
DOCUMENT
To decrease the environmental impact caused by the construction sector, biobased materials need to be further developed to allow better integration and acceptance in the market. Mycelium composites are innovative products, with intrinsic properties which rise the attention of architects, designers and industrial companies. Until now, research has focused on the mechanical properties of mycelium products. The aim has been improving their mechanical strength, to achieve wider application in the construction sector. Alongside this, to introduce mycelium composites to a wider market, the aesthetic experience of the public also needs to be considered. In the context of this proposal, it is argued that users of biobased products can shift their attitudes towards their surroundings by adjusting to the visual aesthetics within their environment or products they surround themselves with (Hekkert, 1997). This can be further attributed to colours which can be experienced as warm or cold, aggressive or inviting, leading to experiences that may include pleasure or displeasure indicating the future success of the bio based product. Mycelium composites can be used as building materials, but also as interior design materials, therefore visible to its user. It is to determine the appropriate methodologies to confer colour to mycelium composites that the companies Impershield and Dorable came together to form the consortium for the present project. The investigated ways are: 1. Through the preliminary colouring of fibres and their use as substrate for mycelium growth 2. The surface treatment of the final product. The Centre of Expertise BioBased Economy (CoEBBE) and the Centre of Applied Research for Art and Design (CARADT) will be guiding the research through their experience with mycelium composites. This project will lay the basis to enhance visual appearance of mycelium composites, with the utilization of natural pigments, natural paints and coatings.
This project addresses the fundamental societal problem that encryption as a technique is available since decades, but has never been widely adopted, mostly because it is too difficult or cumbersome to use for the public at large. PGP illustrates this point well: it is difficult to set-up and use, mainly because of challenges in cryptographic key management. At the same time, the need for encryption has only been growing over the years, and has become an urgent problem with stringent requirements – for instance for electronic communication between doctors and patients – in the General Data Protection Regulation (GDPR) and with systematic mass surveillance activities of internationally operating intelligence agencies. The interdisciplinary project "Encryption for all" addresses this fundamental problem via a combination of cryptographic design and user experience design. On the cryptographic side it develops identity-based and attribute-based encryption on top of the attribute-based infrastructure provided by the existing IRMA-identity platform. Identity-based encryption (IBE) is a scientifically well-established technique, which addresses the key management problem in an elegant manner, but IBE has found limited application so far. In this project it will be developed to a practically usable level, exploiting the existing IRMA platform for identification and retrieval of private keys. Attribute-based encryption (ABE) has not reached the same level of maturity yet as IBE, and will be a topic of further research in this project, since it opens up attractive new applications: like a teacher encrypting for her students only, or a company encrypting for all employees with a certain role in the company. On the user experience design side, efforts will be focused on making these encryption techniques really usable (i.e., easy to use, effective, efficient, error resistant) for everyone (e.g., also for people with disabilities or limited digital skills). To do so, an iterative, human-centred and inclusive design approach will be adopted. On a fundamental level, scientific questions will be addressed, such as how to promote the use of security and privacy-enhancing technologies through design, and whether and how usability and accessibility affect the acceptance and use of encryption tools. Here, theories of nudging and boosting and the unified theory of technology acceptance and use (known as UTAUT) will serve as a theoretical basis. On a more applied level, standards like ISO 9241-11 on usability and ISO 9241-220 on the human-centred design process will serve as a guideline. Amongst others, interface designs will be developed and focus groups, participatory design sessions, expert reviews and usability evaluations with potential users of various ages and backgrounds will be conducted, in a user experience and observation laboratory available at HAN University of Applied Sciences. In addition to meeting usability goals, ensuring that the developed encryption techniques also meet national and international accessibility standards will be a particular point of focus. With respect to usability and accessibility, the project will build on the (limited) usability design experiences with the mobile IRMA application.
CRISPR/Cas genome engineering unleashed a scientific revolution, but entails socio-ethical dilemmas as genetic changes might affect evolution and objections exist against genetically modified organisms. CRISPR-mediated epigenetic editing offers an alternative to reprogram gene functioning long-term, without changing the genetic sequence. Although preclinical studies indicate effective gene expression modulation, long-term effects are unpredictable. This limited understanding of epigenetics and transcription dynamics hampers straightforward applications and prevents full exploitation of epigenetic editing in biotechnological and health/medical applications.Epi-Guide-Edit will analyse existing and newly-generated screening data to predict long-term responsiveness to epigenetic editing (cancer cells, plant protoplasts). Robust rules to achieve long-term epigenetic reprogramming will be distilled based on i) responsiveness to various epigenetic effector domains targeting selected genes, ii) (epi)genetic/chromatin composition before/after editing, and iii) transcription dynamics. Sustained reprogramming will be examined in complex systems (2/3D fibroblast/immune/cancer co-cultures; tomato plants), providing insights for improving tumor/immune responses, skin care or crop breeding. The iterative optimisations of Epi-Guide-Edit rules to non-genetically reprogram eventually any gene of interest will enable exploitation of gene regulation in diverse biological models addressing major societal challenges.The optimally balanced consortium of (applied) universities, ethical and industrial experts facilitates timely socioeconomic impact. Specifically, the developed knowledge/tools will be shared with a wide-spectrum of students/teachers ensuring training of next-generation professionals. Epi-Guide-Edit will thus result in widely applicable effective epigenetic editing tools, whilst training next-generation scientists, and guiding public acceptance.