Alliance has been shown to predict treatment outcome in family-involved treatment for youth problems in several studies.However, meta-analytic research on alliance in family-involved treatment is scarce, and to date, no meta-analytic study on the alliance–outcome association in this field has paid attention to moderating variables. We included 28 studies reporting on the alliance–outcome association in 21 independent study samples of families receiving family-involved treatment for youth problems (N= 2126 families,Mage youth ranging from 10.6 to 16.1). We performed three multilevel meta-analyses of theassociations between three types of alliance processes and treatment outcome, and of several moderator variables. The quality of the alliance was significantly associated with treatment outcome (r= .183,p< .001). Correlations were significantly stronger when alliance scores of different measurement moments were averaged or added, when families were help-seekingrather than receiving mandated care and when studies included younger children. The correlation between alliance improvement and treatment outcome just failed to reached significance (r= .281,p= .067), and no significant correlation was found between split alliances and treatment outcome (r= .106,p= .343). However, the number of included studies reporting onalliance change scores or split alliances was small. Our findings demonstrate that alliance plays a small but significant role in the effectiveness of family-involved treatment. Future research should focus on investigating the more complex systemic aspects of alliance to gain fuller understanding of the dynamic role of alliance in working with families
MULTIFILE
There has been a rapidly growing number of studies of the geographical aspects of happiness and well-being. Many of these studies have been highlighting the role of space and place and of individual and spatial contextual determinants of happiness. However, most of the studies to date do not explicitly consider spatial clustering and possible spatial spillover effects of happiness and well-being. The few studies that do consider spatial clustering and spillovers conduct the analysis at a relatively coarse geographical scale of country or region. This article analyses such effects at a much smaller geographical unit: community areas. These are small area level geographies at the intra-urban level. In particular, the article presents a spatial econometric approach to the analysis of life satisfaction data aggregated to 1,215 communities in Canada and examines spatial clustering and spatial spillovers. Communities are suitable given that they form a small geographical reference point for households. We find that communities’ life satisfaction is spatially clustered while regression results show that it is associated to the life satisfaction of neighbouring communities as well as to the latter's average household income and unemployment rate. We consider the role of shared cultural traits and institutions that may explain such spillovers of life satisfaction. The findings highlight the importance of neighbouring characteristics when discussing policies to improve the well-being of a (small area) place.
This study is the first to systematically and quantitatively explore the factors that determine the length of charging sessions at public charging stations for electric vehicles in urban areas, with particular emphasis placed on the combined parking- and charging-related determinants of connection times. We use a unique and large data set – containing information concerning 3.7 million charging sessions of 84,000 (i.e., 70% of) Dutch EV-users – in which both private users and taxi and car sharing vehicles are included; thus representing a large variation in charging duration behavior. Using multinomial logistic regression techniques, we identify key factors explaining heterogeneity in charging duration behavior across charging stations. We show how these explanatory variables can be used to predict EV-charging behavior in urban areas and we derive preliminary implications for policy-makers and planners who aim to optimize types and size of charging infrastructure.