Background: Clinical reasoning skills are considered to be among the key competencies a physiotherapist should possess. Yet, we know little about how physiotherapy students actually learn these skills in the workplace. A better understanding will benefit physiotherapy education.Objectives: To explore how undergraduate physiotherapy students learn clinical reasoning skills during placements.Design: A qualitative research design using focus groups and semi-structured interviews.Setting: European School of Physiotherapy, Amsterdam, the Netherlands.Participants: Twenty-two undergraduate physiotherapy students and eight clinical teachers participated in this study.Main outcome measures: Thematic analysis of focus groups and semi-structured interviews.Results: Three overarching factors appeared to influence the process of learning clinical reasoning skills: the learning environment, the clinical teacher and the student. Preclinical training failed to adequately prepare students for clinical practice, which expected them to integrate physiotherapeutic knowledge and skills into a cyclic reasoning process. Students’ basic knowledge and assessment structure therefore required further development during the placements. Clinical teachers expected a holistic, multifactorial problem-solving approach from their students. Both students and teachers considered feedback and reflection essential to clinical learning. Barriers to learning experienced by students included time constraints, limited patient exposure and patient communication.Conclusions: Undergraduate physiotherapy students develop clinical reasoning skills through comparison of and reflection on different reasoning approaches observed in professional therapists. Over time, students learn to synthesise these different approaches into their own individual approach. Physiotherapy programme developers should aim to include a wide variety of multidisciplinary settings and patient categories in their clinical placements.
DOCUMENT
The complexity of analysing dynamical systems often lies in the difficulty to monitor each of their dynamic properties. In this article, we use qualitative models to present an exhaustive way of representing every possible state of a given system, and combine it with Bayesian networks to integrate quantitative information and reasoning under uncertainty. The result is a combined model able to give explanations relying on expert knowledge to predict the behaviour of a system. We illustrate our approach with a deterministic model to show how the combination is done, then extend this model to integrate uncertainty and demonstrate its benefits
DOCUMENT
Special relativity theory (SRT) has recently gained popularity as a first introduction to “modern” physics thinking in upper level secondary physics education. A central idea in SRT is the absolute speed of light, with light propagating with uniform speed relative to the reference frame of the observer. Previous research suggests that students, building on their prior understandings of light propagation and relative motion, develop misunderstandings of this idea. The available research provides little detail on the reasoning processes underlying these misunderstandings. We therefore studied secondary education students’ preinstructional reasoning about the speed of light in a qualitative study, probing students’ reasoning through both verbal reasoning and drawing. Event diagrams (EDs) were used as a representational tool to support student reasoning. Results show that students productively use EDs to reason with light propagation. In line with previous research, we found two alternative reference frames students could use for uniform light propagation. Most students show a flexibility in their use of reference frame: They not only evaluate light propagation in their preferred frame of reference, but also relative to other frames. Some students experienced conflict between an alternative reference frame and the speed of light and changed their reasoning because of that. This finding suggests promising directions for designing education.
LINK
When teaching grammar, one of the biggest challenges teachers face is how to make their students achieve conceptual understanding. Some scholars have argued that metaconcepts from theoretical linguistics should be used to pedagogically and conceptually enrich traditional L1 grammar teaching, generating more opportunities for conceptual understanding. However, no empirical evidence exists to support this theoretical position. The current study is the first to explore the role of linguistic metaconcepts in the grammatical reasoning of university students of Dutch Language and Literature. Its goal was to gain a better understanding of the characteristics of students’ grammatical conceptual knowledge and reasoning and to investigate whether students’ reasoning benefits from an intervention that related linguistic metaconcepts to concepts from traditional grammar. Results indicate, among other things, that using explicit linguistic metaconcepts and explicit concepts from traditional grammar is a powerful contributor to the quality of students’ grammatical reasoning. Moreover, the intervention significantly improved students’ use of linguistic metaconcepts.
DOCUMENT
We developed a lesson where students construct a qualitative representation to learn how clock genes are regulated. Qualitative representations provide a non-numerical description of system behavior, focusing on causal relation-ships and system states. They align with human reasoning about system dy-namics and serve as valuable learning tools for understanding both domain-specific systems and developing broader systems thinking skills.The lesson, designed for upper secondary and higher education, is imple-mented in the DynaLearn software at Level 4, where students can model feedback loops. Students construct the representation step by step, guided by a structured workbook and built-in support functions within the software. At each step, they run simulations to examine system behavior and reflect on the results through workbook questions. To ensure scientific accuracy, the representation and workbook were evaluated by domain experts.The lesson begins with modeling how increasing BMAL:CLOCK activity enhances the transcription of PER and CRY genes through binding to the E-box. Next, students explore how mRNA production and degradation—two opposing processes—regulate mRNA levels. This is followed by modeling translation at the ribosomes, where PER and CRY proteins are synthesized and subsequently degraded, again illustrating competing regulatory process-es. Students then model how PER and CRY proteins form a complex that translocates to the nucleus, inhibiting CLOCK:BMAL binding and establish-ing a negative feedback loop. Finally, they extend their understanding by ex-ploring how CLOCK:BMAL also regulates the AVP gene, linking clock genes to broader physiological processes.
MULTIFILE
This paper presents three lesson activities for upper secondary education that focus on learning subject specific knowledge and general system thinking skills by creating a qualitative representation. The learning goals and the pedagogical approach are described.
DOCUMENT
Oncology physiotherapists frequently provide care for patients experiencing severe immunosuppression. Exercise immunology, the science that studies the effects of exercise on the immune system, is a rapidly evolving field with direct relevance to oncology physiotherapists. Understanding oncology physiotherapists’ perspectives on the subject of immune functioning is essential to explore its possible integration into clinical reasoning. This study aimed to assess the perspectives of oncology physiotherapists concerning immune functioning in oncology physiotherapy. For this qualitative research, semi-structured interviews were performed with Dutch oncology physiotherapists. Results were analyzed via inductive thematic analysis, followed by a validation step with participants.
MULTIFILE
We investigate how interactive representations can be used to support learners while learning about the circular motion of celestial bodies. We present the developed representation and accompanying lesson, and report on the effect.
DOCUMENT
Circular and elliptical motion are fundamental topics in physics education, yet learners often struggle to grasp them. We investigate how interactive qualitative representations can be used to describe the characteristic behavior of circular and elliptical motion. We use the vocabulary and algorithms known as qualitative reasoning, which make it possible to represent the distinct features of these systems in a conceptual way. Leveraging the close alignment between qualitative reasoning and human reasoning about dynamic systems, these representations have the potential to enhance understanding in this domain.
DOCUMENT
Abstract Background. Fever in children is common and mostly caused by self-limiting infections. However, parents of febrile children often consult in general practice, in particular during out-of-hours care. To improve management, it is important to understand experiences of GPs managing these consultations. Objective. To describe GPs’ experiences regarding management of childhood fever during out-ofhours care. Methods. A descriptive qualitative study using purposeful sampling, five focus group discussions were held among 37 GPs. Analysis was based on constant comparative technique using open and axial coding. Results. Main categories were: (i) Workload and general experience; (ii) GPs’ perceptions of determinants of consulting behaviour; (iii) Parents’ expectations from the GP’s point of view; (iv) Antibiotic prescribing decisions; (v) Uncertainty of GPs versus uncertainty of parents and (vi) Information exchange during the consultation. GPs felt management of childhood fever imposes a considerable workload. They perceived a mismatch between parental concerns and their own impression of illness severity, which combined with time–pressure can lead to frustration. Diagnostic uncertainty is driven by low incidences of serious infections and dealing with parental demand for antibiotics is still challenging. Conclusion. Children with a fever account for a high workload during out-of-hours GP care which provides a diagnostic challenge due to the low incidence of serious illnesses and lacking longterm relationship. This can lead to frustration and drives antibiotics prescription rates. Improving information exchange during consultations and in the general public to young parents, could help provide a safety net thereby enhancing self-management, reducing consultations and workload, and subsequent antibiotic prescriptions.
DOCUMENT