Purpose: The aim of this study was to assess physiotherapists’ clinical use and acceptance of a novel telemonitoring platform to facilitate the recording of measurements during rehabilitation of patients following anterior cruciate ligament reconstruction. Additionally, suggestions for platform improvement were explored. Methods: Physiotherapists from seven Dutch private physiotherapy practices participated in the study. Data were collected through log files, a technology acceptance questionnaire and focus group meetings using the “buy a feature” method. Data regarding platform use and acceptance (7-point/11-point numeric rating scale) were descriptively analysed. Total scores were calculated for the features suggested to improve the platform, based on the priority rating (1 = nice to have, 2 = should have, 3 = must have). Results: Participating physiotherapists (N = 15, mean [SD] age 33.1 [9.1] years) together treated 52 patients during the study period. Platform use by the therapists was generally limited, with the number of log-ins per patient varying from 3 to 73. Overall, therapists’ acceptance of the platform was low to moderate, with average (SD) scores ranging from 2.5 (1.1) to 4.9 (1.5) on the 7-point Likert scale. The three most important suggestions for platform improvement were: (1) development of a native app, (2) system interoperability, and (3) flexibility regarding type and frequency of measurements. Conclusions: Even though health care professionals were involved in the design of the telemonitoring platform, use in routine care was limited. Physiotherapists recognized the relevance of using health technology, but there are still barriers to overcome in order to successfully implement eHealth in routine care.
OBJECTIVES:The purpose of the current study was to compare the results of a progressive strength training protocol for soccer players after anterior cruciate ligament reconstruction (ACLR) with healthy controls, and to investigate the effects of the strength training protocol on peak quadriceps and hamstring muscle strength. DESIGN:Between subjects design. SETTING:Outpatient physical therapy facility. PARTICIPANTS:Thirty-eight amateur male soccer players after ACLR were included. Thirty age-matched amateur male soccer players served as control group. MAIN OUTCOME MEASURES:Quadriceps and hamstring muscle strength was measured at three time points during the rehabilitation. Limb symmetry index (LSI) > 90% was used as cut-off criteria. RESULTS:Soccer players after ACLR had no significant differences in peak quadriceps and hamstring muscle strength in the injured leg at 7 months after ACLR compared to the dominant leg of the control group. Furthermore, 65.8% of soccer players after ACLR passed LSI >90% at 10 months for quadriceps muscle strength. CONCLUSION:Amateur male soccer players after ACLR can achieve similar quadriceps and hamstring muscle strength at 7 months compared to healthy controls. These findings highlight the potential of progressive strength training in rehabilitation after ACLR that may mitigate commonly reported strength deficits.
LINK
The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from −10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.
LINK