Introduction: Given the complexity of teaching clinical reasoning to (future) healthcare professionals, the utilization of serious games has become popular for supporting clinical reasoning education. This scoping review outlines games designed to support teaching clinical reasoning in health professions education, with a specific emphasis on their alignment with the 8-step clinical reasoning cycle and the reflective practice framework, fundamental for effective learning. Methods: A scoping review using systematic searches across seven databases (PubMed, CINAHL, ERIC, PsycINFO, Scopus, Web of Science, and Embase) was conducted. Game characteristics, technical requirements, and incorporation of clinical reasoning cycle steps were analyzed. Additional game information was obtained from the authors. Results: Nineteen unique games emerged, primarily simulation and escape room genres. Most games incorporated the following clinical reasoning steps: patient consideration (step 1), cue collection (step 2), intervention (step 6), and outcome evaluation (step 7). Processing information (step 3) and understanding the patient’s problem (step 4) were less prevalent, while goal setting (step 5) and reflection (step 8) were least integrated. Conclusion: All serious games reviewed show potential for improving clinical reasoning skills, but thoughtful alignment with learning objectives and contextual factors is vital. While this study aids health professions educators in understanding how games may support teaching of clinical reasoning, further research is needed to optimize their effective use in education. Notably, most games lack explicit incorporation of all clinical reasoning cycle steps, especially reflection, limiting its role in reflective practice. Hence, we recommend prioritizing a systematic clinical reasoning model with explicit reflective steps when using serious games for teaching clinical reasoning.
DOCUMENT
Differentiates between clinical reasoning for diagnosis, etiology, prognosis, and for interventions. Includes basic knowledge about clinical reasoning and more in-depth knowledge, illustrated with videos. Helps to understand and to critical appraise the common research designs in healthcare scientific literature.
DOCUMENT
The focus of the research is 'Automated Analysis of Human Performance Data'. The three interconnected main components are (i)Human Performance (ii) Monitoring Human Performance and (iii) Automated Data Analysis . Human Performance is both the process and result of the person interacting with context to engage in tasks, whereas the performance range is determined by the interaction between the person and the context. Cheap and reliable wearable sensors allow for gathering large amounts of data, which is very useful for understanding, and possibly predicting, the performance of the user. Given the amount of data generated by such sensors, manual analysis becomes infeasible; tools should be devised for performing automated analysis looking for patterns, features, and anomalies. Such tools can help transform wearable sensors into reliable high resolution devices and help experts analyse wearable sensor data in the context of human performance, and use it for diagnosis and intervention purposes. Shyr and Spisic describe Automated Data Analysis as follows: Automated data analysis provides a systematic process of inspecting, cleaning, transforming, and modelling data with the goal of discovering useful information, suggesting conclusions and supporting decision making for further analysis. Their philosophy is to do the tedious part of the work automatically, and allow experts to focus on performing their research and applying their domain knowledge. However, automated data analysis means that the system has to teach itself to interpret interim results and do iterations. Knuth stated: Science is knowledge which we understand so well that we can teach it to a computer; and if we don't fully understand something, it is an art to deal with it.[Knuth, 1974]. The knowledge on Human Performance and its Monitoring is to be 'taught' to the system. To be able to construct automated analysis systems, an overview of the essential processes and components of these systems is needed.Knuth Since the notion of an algorithm or a computer program provides us with an extremely useful test for the depth of our knowledge about any given subject, the process of going from an art to a science means that we learn how to automate something.
The objective of the SIA KIEM proposal Capturing Value is to understand financial decision making and capturing value as a logical step in the conceptual and realization phase of creative products. We will explore the narrative of reasoning and making choices in the use of different financial instruments by creative professionals. These narratives are telling about the values creative professionals attach to financial decision making and how these influence the choice of financial instruments. Most research focusses either on the (non)availability of financial instruments or on the use of these instruments. This research proposal focusses on the missing link: how do creative professionals reason when confronted with making financial decisions? Which options do they consider and how are these influenced by their attitude towards and knowledge of various formal and informal financial instruments? The project is a first step to develop a bigger and international research proposal on the way artists and creatives capture the financial value of their creations.
For English see below In dit project werkt het Lectoraat ICT-innovaties in de Zorg van hogeschool Windesheim samen met zorganisaties de ZorgZaak, De Stouwe, en IJsselheem en daarnaast Zorgcampus Noorderboog, Zorgtrainingscentrum Regio Zwolle, Patiëntenfederatie NPCF, VitaalThuis, ActiZ, Vilans, V&VN, Universiteit Twente en het Lectoraat Innoveren in de Ouderenzorg van Windesheim aan het in staat stellen van wijkverpleegkundigen om autonoom en doelmatig, op basis van klinisch redeneren, eHealth te indiceren en in te zetten bij cliënten. De aanleiding voor dit project wordt gevormd door de wijzigingen per 1 januari 2015 in de Zorgverzekeringswet. Wijkverpleegkundigen zijn sindsdien zelf verantwoordelijk voor de indicatiestelling en zorgtoewijzing voor verzorging en verpleging thuis: zij moeten bepalen welke zorg hun cliënten nodig hebben gezien hun individuele situaties, en hoe die zorg het best geleverd kan worden. Zorgverzekeraars leggen hierbij minimumeisen op, o.a. met betrekking tot de inzet van eHealth. Wijkverpleegkundigen hebben op dit moment echter niet of nauwelijks ervaring met het inzetten en toepassen van technologische toepassingen zoals eHealth. Vraagarticulatie leidde tot de volgende praktijkvraagstelling: 1. Hoe kunnen wijkverpleegkundigen worden voorzien in hun informatiebehoefte over eHealth? 2. Hoe kunnen wijkverpleegkundigen worden ondersteund in hun klinisch redeneren over het inzetten van eHealth bij hun cliënten? 3. Hoe kunnen wijkverpleegkundigen worden ondersteund bij het inzetten van eHealth in hun zorgproces? Het project levert hiertoe drie bijdragen: - De eerste bijdrage is een duurzaam geborgde keuzehulp (een app voor tablet of smartphone) waarmee wijkverpleegkundigen toegang hebben tot de benodigde informatie over eHealth-toepassingen en die aansluit bij de manier waarop wijkverpleegkundigen zorg indiceren (bijvoorbeeld door relaties te leggen tussen NIC-interventies en bijpassende eHealth-toepassingen). - Informatievoorziening is niet een afdoende antwoord op de handelingsverlegenheid van de wijkverpleegkundige omdat eHealth sterk in ontwikkeling is en blijft waardoor er altijd een discrepantie zal bestaan tussen de beschikbare en de benodigde informatie. . De tweede bijdrage van dit project is daarom kennis over (en inzicht in) het klinisch redeneren over de inzet van eHealth. Deze kennis wordt in het project doorvertaald naar een trainingsmodule die erop is gericht om het klinisch redeneren van wijkverpleegkundigen over het inzetten van eHealth en andere thuiszorgtechnologie bij hun cliënten te versterken. - De derde bijdrage van dit project omhelst inbedding van bovengenoemde resultaten in het verpleegkunde-onderwijs van onder meer Windesheim en in nascholingstrajecten voor wijkverpleegkundigen. Voor duurzame, bredere inbedding in het onderwijs wordt samengewerkt met regionale zorgonderwijsnetwerken. In this project the research group IT-innovations in Health Care of Windesheim University of Applied Sciences cooperates with care organisations de ZorgZaak, De Stouwe, and IJsselheem, and stakeholders Zorgcampus Noorderboog, Zorgtrainingscentrum Regio Zwolle, Patiëntenfederatie NPCF, VitaalThuis, ActiZ, Vilans, V&VN, University of Twente, and research group Innovation of Care of Older Adults of Windesheim to enable home care nurses to autonomously and adequately, based on clinical reasoning, allocate eHealth and implement it in patient care. The motivation behind this project lies in the alterations in the care insurance legislation per January 2015. Since then, home care nurses are responsible for the care allocation of all care at home: they determine which care their clients require, taking into account the individual situations, and how this care can best be delivered. Care insurance companies impose minimum requirements for this allocation of home care, among others concerning the implementation of eHealth. Home care nurses, however, have no or limited information about and experience with technical applications like eHealth. Articulation of the demands of home care nurses resulted in the following questions: 1. How can home care nurses be provided with information concerning eHealth? 2. How can home care nurses be supported in their clinical reasoning about the deployment of eHealth by their patients? 3. How can home care nurses be supported when deploying eHealth in their care process? This project contributes in three ways: " The first contribution is a sustainable selection tool (an app for tablet or smartphone) to be used by home care nurses to provide them with the required information about eHealth applications. This selection tool will work in accordance with how home care nurses allocate care, e.g. by relating NIC-interventions to matching eHealth applications. " Providing information is an insufficient, although necessary, answer to the demands of home care nurses because of continuously developing eHealth applications. Hence, the second contribution of this project is knowledge about (and insight in) the clinical reasoning about the deployment of eHealth. This knowledge will be converted into a training module aimed at strengthening the clinical reasoning about the deployment of eHealth by their patients. " The third contribution of this project concerns embedding the selection tool and the training module in regular education (among others at Windesheim) and in refresher courses for home care nurses. Cooperation with regional care education networks will ensure sustainable and broad embedding of both the selection tool and the training module.