The aim of this research/project is to investigate and analyze the opportunities and challenges of implementing AI technologies in general and in the transport and logistics sectors. Also, the potential impacts of AI at sectoral, regional, and societal scales that can be identified and chan- neled, in the field of transport and logistics sectors, are investigated. Special attention will be given to the importance and significance of AI adoption in the development of sustainable transport and logistics activities using intelligent and autonomous transport and cleaner transport modalities. The emphasis here is therefore on the pursuit of ‘zero emissions’ in transport and logistics at the urban/city and regional levels.Another goal of this study is to examine a new path for follow-up research topics related to the economic and societal impacts of AI technology and the adoption of AI systems at organizational and sectoral levels.This report is based on an exploratory/descriptive analysis and focuses mainly on the examination of existing literature and (empirical) scientific research publica- tions, previous and ongoing AI initiatives and projects (use cases), policy documents, etc., especially in the fields of transport and logistics in the Netherlands. It presents and discusses many aspects of existing challenges and opportunities that face organizations, activities, and individuals when adopting AI technology and systems.
Machine learning models have proven to be reliable methods in classification tasks. However, little research has been conducted on the classification of dwelling characteristics based on smart meter and weather data before. Gaining insights into dwelling characteristics, which comprise of the type of heating system used, the number of inhabitants, and the number of solar panels installed, can be helpful in creating or improving the policies to create new dwellings at nearly zero-energy standard. This paper compares different supervised machine learning algorithms, namely Logistic Regression, Support Vector Machine, K-Nearest Neighbor, and Long-short term memory, and methods used to correctly implement these algorithms. These methods include data pre-processing, model validation, and evaluation. Smart meter data, which was used to train several machine learning algorithms, was provided by Groene Mient. The models that were generated by the algorithms were compared on their performance. The results showed that the Long-short term memory performed the best with 96% accuracy. Cross Validation was used to validate the models, where 80% of the data was used for training purposes and 20% was used for testing purposes. Evaluation metrics were used to produce classification reports, which indicates that the Long-short term memory outperforms the compared models on the evaluation metrics for this specific problem.
De arbeidsmarkt is continu in ontwikkeling, leidend tot een steeds veranderende vraag naar competenties en banen. Dit vraagt naast beroepsgerichte vaardigheden en kennis over veerkracht en wendbaarheid van professionals. Van de student wordt daarom verwacht dat die zich ontwikkeld in zelfgereguleerd (ZGL) leren. ZGL gaat over regie van het eigen leerproces: studenten bepalen zelf hoe tot leerresultaten te komen, deze te evalueren en sturen het leerproces zelf bij. Voor opleidingen is het de vraag hoe ze ZGL kunnen begeleiden en bevorderen. Dit behoeft inzicht in leergedrag, patronen hierin en bewustzijn over hoe deze inzichten gebruikt kunnen worden om ZGL te ondersteunen en het leerproces te begeleiden. In dit onderzoek is geïnventariseerd of de data die studenten in de elektronische leeromgeving (ELO) achterlaten een indicatie kan geven over het leerproces en ZGL van de student. Om de ingewikkelde patronen uit de data te halen, zijn de data uit de ELO met behulp van AItechnieken geanalyseerd. Hiermee kon het leerproces van studenten in verschillende categorieën worden onderverdeeld. De categorieën geven een eerste indicatie over het ZGL van de student. Verder onderzoek is benodigd, ook om te onderzoeken wat dit betekent voor de ondersteuning van studenten in hun leerproces.