The aviation industry needs led to an increase in the number of aircraft in the sky. When the number of flights within an airspace increases, the chance of a mid-air collision increases. Systems such as the Traffic Alert and Collision Avoidance System (TCAS) and Airborne Collision Avoidance System (ACAS) are currently used to alert pilots for potential mid-air collisions. The TCAS and the ACAS use algorithms to perform Aircraft Trajectory Predictions (ATPs) to detect potential conflicts between aircrafts. In this paper, three different aircraft trajectory prediction algorithms named Deep Neural Network (DNN), Random Forest (RF) and Extreme Gradient Boosting were implemented and evaluated in terms of their accuracy and robustness to predict the future aircraft heading. These algorithms were as well evaluated in the case of adversarial samples. Adversarial training is applied as defense method in order to increase the robustness of ATPs algorithms against the adversarial samples. Results showed that, comparing the three algorithm’s performance, the extreme gradient boosting algorithm was the most robust against adversarial samples and adversarial training may benefit the robustness of the algorithms against lower intense adversarial samples. The contributions of this paper concern the evaluation of different aircraft trajectory prediction algorithms, the exploration of the effects of adversarial attacks, and the effect of the defense against adversarial samples with low perturbation compared to no defense mechanism.
DOCUMENT
Machine learning models have proven to be reliable methods in classification tasks. However, little research has been done on classifying dwelling characteristics based on smart meter & weather data before. Gaining insights into dwelling characteristics can be helpful to create/improve the policies for creating new dwellings at NZEB standard. This paper compares the different machine learning algorithms and the methods used to correctly implement the models. These methods include the data pre-processing, model validation and evaluation. Smart meter data was provided by Groene Mient, which was used to train several machine learning algorithms. The models that were generated by the algorithms were compared on their performance. The results showed that Recurrent Neural Network (RNN) 2performed the best with 96% of accuracy. Cross Validation was used to validate the models, where 80% of the data was used for training purposes and 20% was used for testing purposes. Evaluation metrices were used to produce classification reports, which can indicate which of the models work the best for this specific problem. The models were programmed in Python.
DOCUMENT
Assigning gates to flights considering physical, operational, and temporal constraints is known as the Gate Assignment Problem. This article proposes the novelty of coupling a commercial stand and gate allocation software with an off-the-grid optimization algorithm. The software provides the assignment costs, verifies constraints and restrictions of an airport, and provides an initial allocation solution. The gate assignment problem was solved using a genetic algorithm. To improve the robustness of the allocation results, delays and early arrivals are predicted using a random forest regressor, a machine learning technique and in turn they are considered by the optimization algorithm. Weather data and schedules were obtained from Zurich International Airport. Results showed that the combination of the techniques result in more efficient and robust solutions with higher degree of applicability than the one possible with the sole use of them independently.
DOCUMENT