Estimating the remaining useful life (RUL) of an asset lies at the heart of prognostics and health management (PHM) of many operations-critical industries such as aviation. Mod- ern methods of RUL estimation adopt techniques from deep learning (DL). However, most of these contemporary tech- niques deliver only single-point estimates for the RUL without reporting on the confidence of the prediction. This practice usually provides overly confident predictions that can have severe consequences in operational disruptions or even safety. To address this issue, we propose a technique for uncertainty quantification (UQ) based on Bayesian deep learning (BDL). The hyperparameters of the framework are tuned using a novel bi-objective Bayesian optimization method with objectives the predictive performance and predictive uncertainty. The method also integrates the data pre-processing steps into the hyperparameter optimization (HPO) stage, models the RUL as a Weibull distribution, and returns the survival curves of the monitored assets to allow informed decision-making. We vali- date this method on the widely used C-MAPSS dataset against a single-objective HPO baseline that aggregates the two ob- jectives through the harmonic mean (HM). We demonstrate the existence of trade-offs between the predictive performance and the predictive uncertainty and observe that the bi-objective HPO returns a larger number of hyperparameter configurations compared to the single-objective baseline. Furthermore, we see that with the proposed approach, it is possible to configure models for RUL estimation that exhibit better or comparable performance to the single-objective baseline when validated on the test sets.
DOCUMENT
Remaining Useful Life (RUL) estimation is directly related with the application of predictive maintenance. When RUL estimation is performed via data-driven methods and Artificial Intelligence algorithms, explainability and interpretability of the model are necessary for trusted predictions. This is especially important when predictive maintenance is applied to gas turbines or aeroengines, as they have high operational and maintenance costs, while their safety standards are strict and highly regulated. The objective of this work is to study the explainability of a Deep Neural Network (DNN) RUL prediction model. An open-source database is used, which is composed by computed measurements through a thermodynamic model for a given turbofan engine, considering non-linear degradation and data points for every second of a full flight cycle. First, the necessary data pre-processing is performed, and a DNN is used for the regression model. The selection of its hyper-parameters is done using random search and Bayesian optimisation. Tests considering the feature selection and the requirements of additional virtual sensors are discussed. The generalisability of the model is performed, showing that the type of faults as well as the dominant degradation has an important effect on the overall accuracy of the model. The explainability and interpretability aspects are studied, following the Local Interpretable Model-agnostic Explanations (LIME) method. The outcomes are showing that for simple data sets, the model can better understand physics, and LIME can give a good explanation. However, as the complexity of the data increases, both the accuracy of the model drops but also LIME seems to have difficulties in giving satisfactory explanations.
DOCUMENT
Abstract Purpose To determine the predictive value of quality of life for mortality at the domain and item levels. Methods This longitudinal study was carried out in a sample of 479 Dutch people aged 75 years or older living independently, using a follow-up of 7 years. Participants completed a self-report questionnaire. Quality of life was assessed with the WHOQOL-BREF, including four domains: physical health, psychological, social relationships, and environment. The municipality of Roosendaal (a town in the Netherlands) indicated the dates of death of the individuals. Results Based on mean, all quality of life domains predicted mortality adjusted for gender, age, marital status, education, and income. The hazard ratios ranged from 0.811 (psychological) to 0.933 (social relationships). The areas under the curve (AUCs) of the four domains were 0.730 (physical health), 0.723 (psychological), 0.693 (social relationships), and 0.700 (environment). In all quality of life domains, at least one item predicted mortality (adjusted). Conclusion Our study showed that all four quality of life domains belonging to the WHOQOL-BREF predict mortality in a sample of Dutch community-dwelling older people using a follow-up period of 7 years. Two AUCs were above threshold (psychological, physical health). The findings offer health care and welfare professionals evidence for conducting interventions to reduce the risk of premature death.
DOCUMENT
In order to stay competitive and respond to the increasing demand for steady and predictable aircraft turnaround times, process optimization has been identified by Maintenance, Repair and Overhaul (MRO) SMEs in the aviation industry as their key element for innovation. Indeed, MRO SMEs have always been looking for options to organize their work as efficient as possible, which often resulted in applying lean business organization solutions. However, their aircraft maintenance processes stay characterized by unpredictable process times and material requirements. Lean business methodologies are unable to change this fact. This problem is often compensated by large buffers in terms of time, personnel and parts, leading to a relatively expensive and inefficient process. To tackle this problem of unpredictability, MRO SMEs want to explore the possibilities of data mining: the exploration and analysis of large quantities of their own historical maintenance data, with the meaning of discovering useful knowledge from seemingly unrelated data. Ideally, it will help predict failures in the maintenance process and thus better anticipate repair times and material requirements. With this, MRO SMEs face two challenges. First, the data they have available is often fragmented and non-transparent, while standardized data availability is a basic requirement for successful data analysis. Second, it is difficult to find meaningful patterns within these data sets because no operative system for data mining exists in the industry. This RAAK MKB project is initiated by the Aviation Academy of the Amsterdam University of Applied Sciences (Hogeschool van Amsterdan, hereinafter: HvA), in direct cooperation with the industry, to help MRO SMEs improve their maintenance process. Its main aim is to develop new knowledge of - and a method for - data mining. To do so, the current state of data presence within MRO SMEs is explored, mapped, categorized, cleaned and prepared. This will result in readable data sets that have predictive value for key elements of the maintenance process. Secondly, analysis principles are developed to interpret this data. These principles are translated into an easy-to-use data mining (IT)tool, helping MRO SMEs to predict their maintenance requirements in terms of costs and time, allowing them to adapt their maintenance process accordingly. In several case studies these products are tested and further improved. This is a resubmission of an earlier proposal dated October 2015 (3rd round) entitled ‘Data mining for MRO process optimization’ (number 2015-03-23M). We believe the merits of the proposal are substantial, and sufficient to be awarded a grant. The text of this submission is essentially unchanged from the previous proposal. Where text has been added – for clarification – this has been marked in yellow. Almost all of these new text parts are taken from our rebuttal (hoor en wederhoor), submitted in January 2016.