Uit het rapport: "Deze onderzoeksagenda is tot stand gebracht door de lectoren die samenwerken in het Nationaal Lectoren Platform Urban Energy. Alle betrokkenen bij het platform zijn in staat gesteld om bij te dragen aan de tekst, speciale dank daarbij voor de bijdragen en commentaren vanuit de TKI Urban Energy en de HCA topsector Energie."
Energy transition is key to achieving a sustainable future. However, in this transition, an often neglected pillar is raising awareness and educating individuals on the benefits, complexities, and urgency of renewable energy supply and energy efficiency. This paper exemplifies an educational practice to create awareness on sustainable energy transition by playing a “serious” game, the We Energy Game. Concretely, this qualitative study aims to analyze communicational and educational aspects of the game by making use of a validated framework for serious games analysis, and to expose the opinion of players after maintaining group discussions. The analysis reveals a detailed insight of narrative elements, messages, and gameplay mechanisms, but also educative aspects to be considered by teachers if they are interested in putting the game into practice in their classes. The group discussion reveals that the game has been more successful in achieving cognitive (understanding/knowledge) and affective (emotion/interest and concern) engagement than in motivating attitudinal or behavioral engagement.
This report describes the creation and use of a database for energy storage technologies which was developed in conjunction with Netbeheer Nederland and the Hanze University of Applied Sciences. This database can be used to make comparisons between a selection of storage technologies and will provide a method for ranking energy storage technology suitability based on the desired application requirements. In addition, this document describes the creation of the energy storage label which contains detailed characteristics for specific storage systems. The layout of the storage labels enables the analysis of different storage technologies in a comprehensive, understandable and comparative manner. A sampling of storage technology labels are stored in an excel spreadsheet and are also compiled in Appendix I of this report; the storage technologies represented here were found to be well suited to enable flexibility in energy supply and to potentially provide support for renewable energy integration [37] [36]. The data in the labels is presented on a series of graphs to allow comparisons of the technologies. Finally, the use and limitations of energy storage technologies are discussed. The results of this research can be used to support the Dutch enewable Energy Transition by providing important information regarding energy storage in both technically detailed and general terms. This information can be useful for energy market parties in order to analyze the role of storage in future energy scenarios and to develop appropriate strategies to ensure energy supply.
MULTIFILE