LINK
BACKGROUND AND PURPOSE: The MyotonPRO is a portable device that measures muscle tone and biomechanical muscle properties objectively. MyotonPRO has already proven to be effective in measuring muscle properties in healthy and diseased populations. However, to the best of our knowledge, it has never been tested in individuals suffering from paratonia, a form of hypertonia frequently accompanying dementia. The aims of the present study were to (1) compare muscle tone, elasticity, and stiffness between 3 different subpopulations of young and old healthy adults and individuals with paratonia, and (2) investigate the intra- and interrater reproducibility of MyotonPRO measurements of the biceps brachii (BB) muscle in each subpopulation.METHODS: MyotonPRO measurements of muscle tone, elasticity, and dynamic stiffness were carried out by 2 investigators on 2 different days over the BB muscles of 54 participants (18 healthy young adults, 20 healthy older adults, and 16 older individuals with paratonia). Muscle properties were compared between subpopulations using ANOVA/Welch and post hoc tests. Reliability (intraclass correlation coefficient) and agreement parameters (standard error of measurement and the minimal detectable change) were calculated.RESULTS: Statistically significant differences between subpopulations were found in all parameters, except for stiffness between healthy elderly and individuals with paratonia. In the healthy subpopulations, (a) intrarater reliability was very high and intrarater agreement was good between 2 consecutive series, (b) between days intrarater reliability was low to high and intrarater agreement was variable, (c) interrater reliability was high to very high and interrater agreement was good. In individuals with paratonia, (a) intrarater reliability was moderate to high and agreement was variable between series, (b) between days intrarater reliability was poor to moderate and agreement was poor, (c) interrater reliability ranged from low to high with poor agreement.CONCLUSIONS: MyotonPRO measurements of the BB muscle showed good reproducibility in both healthy subpopulations, particularly for measurements performed within the same day. In individuals with paratonia, reliability and agreement were substantially lower. MyotonPRO can be used in clinical assessment and research. However, in individuals with paratonia, careful interpretation of results is required. Research in a larger sample of persons with paratonia at different stages of disease severity is recommended.
DOCUMENT
PURPOSE: To examine the reproducibility of the institutional version of the Dutch Activity Card Sort (ACS-NL) and the possible presence of gender bias.METHODS: Older rehabilitation inpatients (N = 52) were included. Intra- and inter-rater agreement for the ACS-NL total and subscale scores was examined by intraclass correlations (ICC), and agreement of individual items by the κ coefficient (k). Gender bias was examined by the proportion of men and women selecting an ACS item.RESULTS: ICC for inter-rater agreement of the ACS total score ranged between 0.78 and 0.87, ICC for intra-rater agreement ranged between 0.79 and 0.89. Median inter-rater κ for ACS-NL items was 0.72 (interquartile scores; 0.62-0.80). The inter-rater agreement (k = 0.43) and intra-rater agreement (k = 0.39) for the five most important activities was lower. Twenty ACS activities favoured men and seven activities favoured women. As a result, men scored systematically higher on the ACS-NL than women. Logistic regression analysis correcting for activity engagement level confirmed our findings.CONCLUSIONS: The reproducibility of the ACS-NL was high. The ACS-NL institutional version score may be biased in favour of men.
DOCUMENT
Various companies in diagnostic testing struggle with the same “valley of death” challenge. In order to further develop their sensing application, they rely on the technological readiness of easy and reproducible read-out systems. Photonic chips can be very sensitive sensors and can be made application-specific when coated with a properly chosen bio-functionalized layer. Here the challenge lies in the optical coupling of the active components (light source and detector) to the (disposable) photonic sensor chip. For the technology to be commercially viable, the price of the disposable photonic sensor chip should be as low as possible. The coupling of light from the source to the photonic sensor chip and back to the detectors requires a positioning accuracy of less than 1 micrometer, which is a tremendous challenge. In this research proposal, we want to investigate which of the six degrees of freedom (three translational and three rotational) are the most crucial when aligning photonic sensor chips with the external active components. Knowing these degrees of freedom and their respective range we can develop and test an automated alignment tool which can realize photonic sensor chip alignment reproducibly and fully autonomously. The consortium with expertise and contributions in the value chain of photonics interfacing, system and mechanical engineering will investigate a two-step solution. This solution comprises a passive pre-alignment step (a mechanical stop determines the position), followed by an active alignment step (an algorithm moves the source to the optimal position with respect to the chip). The results will be integrated into a demonstrator that performs an automated procedure that aligns a passive photonic chip with a terminal that contains the active components. The demonstrator is successful if adequate optical coupling of the passive photonic chip with the external active components is realized fully automatically, without the need of operator intervention.
Implanting biocompatible materials is nothing new, 3D printing of cells and extracellular matrix is well underway so growing replacement tissues in a lab is within reach. However, certain obstacles remain: How to culture functional tissues with robust and reproducible 3D architecture? Application of support structures can aid, but what if such scaffolds obstruct functionality of the graft while having limited chance of being degraded within the recipient’s body? Bioplastics are polymers of natural origin that can be degraded enzymatically. We want to use bioplastics for production of 3D printed mesh scaffolds that support cell adhesion, proliferation, differentiation, and maturation (Fig. 1). These scaffolds are designed to be temporal and sacrificial: enzymes will be used to remove the scaffold in a tissue friendly manner prior to implantation allowing tailor made, functional and ideally ‘self-only’ grafts.