Zoekresultaten

Producten 1.322

product

The power to change

With the effects of climate change linked to the use of fossil fuels, as well as the prospect of their eventual depletion, becoming more noticeable, political establishment and society appear ready to switch towards using renewable energy. Solar power and wind power are considered to be the most significant source of global low-carbon energy supply. Wind energy continues to expand as it becomes cheaper and more technologically advanced. Yet, despite these expectations and developments, fossil fuels still comprise nine-tenths of the global commercial energy supply. In this article, the history, technology, and politics involved in the production and barriers to acceptance of wind energy will be explored. The central question is why, despite the problems associated with the use of fossil fuels, carbon dependency has not yet given way to the more ecologically benign forms of energy. Having briefly surveyed some literature on the role of political and corporate stakeholders, as well as theories relating to sociological and psychological factors responsible for the grassroots’ resistance (“not in my backyard” or NIMBYs) to renewable energy, the findings indicate that motivation for opposition to wind power varies. While the grassroots resistance is often fueled by the mistrust of the government, the governments’ reason for resisting renewable energy can be explained by their history of a close relationship with the industrial partners. This article develops an argument that understanding of various motivations for resistance at different stakeholder levels opens up space for better strategies for a successful energy transition. https://doi.org/10.30560/sdr.v1n1p11 LinkedIn: https://www.linkedin.com/in/helenkopnina/

MULTIFILE

10-11-2019
The power to change
product

Cartilage tissue turnover increases with high- compared to low-intensity resistance training in patients with knee OA

ObjectivesTo investigate cartilage tissue turnover in response to a supervised 12-week exercise-related joint loading training program followed by a 6-month period of unsupervised training in patients with knee osteoarthritis (OA). To study the difference in cartilage tissue turnover between high- and low-resistance training.MethodPatients with knee OA were randomized into either high-intensity or low-intensity resistance supervised training (two sessions per week) for 3 months and unsupervised training for 6 months. Blood samples were collected before and after the supervised training period and after the follow-up period. Biomarkers huARGS, C2M, and PRO-C2, quantifying cartilage tissue turnover, were measured by ELISA. Changes in biomarker levels over time within and between groups were analyzed using linear mixed models with baseline values as covariates.ResultshuARGS and C2M levels increased after training and at follow-up in both low- and high-intensity exercise groups. No changes were found in PRO-C2. The huARGS level in the high-intensity resistance training group increased significantly compared to the low-intensity resistance training group after resistance training (p = 0.029) and at follow-up (p = 0.003).ConclusionCartilage tissue turnover and cartilage degradation appear to increase in response to a 3-month exercise-related joint loading training program and at 6-month follow-up, with no evident difference in type II collagen formation. Aggrecan remodeling increased more with high-intensity resistance training than with low-intensity exercise.These exploratory biomarker results, indicating more cartilage degeneration in the high-intensity group, in combination with no clinical outcome differences of the VIDEX study, may argue against high-intensity training.

PDF

31-12-2022
Cartilage tissue turnover increases with high- compared to low-intensity resistance training in patients with knee OA
product

Who supplies digital surveillance technologies to African governments?

African citizens are increasingly being surveilled, profiled, and targeted online in ways that violate their rights. African governments frequently use pandemic or terrorism-related security risks to grant themselves additional surveillance rights and significantly increase their collection of monitoring apparatus and technologies while spending billions of dollars to conduct surveillance (Roberts et al. 2023). Surveillance is a prominent strategy African governments use to limit civic space (Roberts and Mohamed Ali 2021). Digital technologies are not the root of surveillance in Africa because surveillance practices predate the digital age (Munoriyarwa and Mare 2023). Surveillance practices were first used by colonial governments, continued by post-colonial governments, and are currently being digitalized and accelerated by African countries. Throughout history, surveillance has been passed down from colonizers to liberators, and some African leaders have now automated it (Roberts et al. 2023). Many studies have been conducted on illegal state surveillance in the United States, China, and Europe (Feldstein 2019; Feldstein 2021). Less is known about the supply of surveillance technologies to Africa. With a population of almost 1.5 billion people, Africa is a continent where many citizens face surveillance with malicious intent. As mentioned in previous chapters, documenting the dimensions and drivers of digital surveillance in Africa is

MULTIFILE

19-03-2025
Who supplies digital surveillance technologies to African governments?

Projecten 8

project

Biobonding, improved biocomposites through fibre treatment

Recent research by the renowned Royal Institution of Chartered Surveyors (RICS) shows that more than 2/3 of all CO2 is emitted during the building process and less than 1/3 during use to heat the building and the tap water. Lightweight, local and biobased materials such as biocomposites to replace concrete and fossil based cladding are in the framework of climate change, a necessity for future building. Using plant fiber in polymer composites is especially interesting for construction since natural fibers exhibit comparative good mechanical properties with small specific weight, which defines the potential for lightweight constructions. The use of renewable resources, will affect the ecosystem favorably and the production costs of construction materials could also decrease. However, one disadvantage of natural fibers in plastics is their hydrophilic properties. In construction the materials need to meet special requirements like the resistance against fluctuating weather conditions (Ticoalu et al., 2010). In contrast to synthetic fibers, the natural ones are more moisture- and UV-radiation-sensitive. That may lead to degradation of these materials and a decreasing in quality of products. (Lopez et al., 2006; Mokhothu und John, 2017) Tanatex and NPSP have approached CoE BBE/Avans to assist in a study where fibres impregnated with the (modified) Tanatex products will be used for reinforcement of thermoset biopolymers. The influence of the different Tanatex products on the moisture absorption of natural/cellulosic fibers and the adhesion on the fibers on main composite matrix will be measured. The effect of Tantex products can optimize the bonding reaction between the resin and the fibers in the (bio) composite and result to improved strength and physico-chemical properties of the biocomposite materials. (word count: 270)

Afgerond
project

BUILDING LIGHT- LIGHT AND SUSTAINABLE BIOCOMPOSITES FOR CONSTRUCTION

Buildings are responsible for approximately 40% of energy consumption and 36% of carbon dioxide (CO2) emissions in the EU, and the largest energy consumer in Europe (https://ec.europa.eu/energy). Recent research shows that more than 2/3 of all CO2 is emitted during the building process whereas less than 1/3 is emitted during use. Cement is the source of about 8% of the world's CO2 emissions and innovation to create a distributive change in building practices is urgently needed, according to Chatham House report (Lehne et al 2018). Therefore new sustainable materials must be developed to replace concrete and fossil based building materials. Lightweight biobased biocomposites are good candidates for claddings and many other non-bearing building structures. Biocarbon, also commonly known as Biochar, is a high-carbon, fine-grained solid that is produced through pyrolysis processes and currently mainly used for energy. Recently biocarbon has also gained attention for its potential value with in industrial applications such as composites (Giorcellia et al, 2018; Piri et.al, 2018). Addition of biocarbon in the biocomposites is likely to increase the UV-resistance and fire resistance of the materials and decrease hydrophilic nature of composites. Using biocarbon in polymer composites is also interesting because of its relatively low specific weight that will result to lighter composite materials. In this Building Light project the SMEs Torrgas and NPSP will collaborate with and Avans/CoE BBE in a feasibility study on the use of biocarbon in a NPSP biocomposite. The physicochemical properties and moisture absorption of the composites with biocarbon filler will be compared to the biocomposite obtained with the currently used calcium carbonate filler. These novel biocarbon-biocomposites are anticipated to have higher stability and lighter weight, hence resulting to a new, exciting building materials that will create new business opportunities for both of the SME partners.

Afgerond
project

Development of ROS1-positive cell lines to improve personalized therapy in lung cancer patients

Every year in the Netherlands around 10.000 people are diagnosed with non-small cell lung cancer, commonly at advanced stages. In 1 to 2% of patients, a chromosomal translocation of the ROS1 gene drives oncogenesis. Since a few years, ROS1+ cancer can be treated effectively by targeted therapy with the tyrosine kinase inhibitor (TKI) crizotinib, which binds to the ROS1 protein, impairs the kinase activity and thereby inhibits tumor growth. Despite the successful treatment with crizotinib, most patients eventually show disease progression due to development of resistance. The available TKI-drugs for ROS1+ lung cancer make it possible to sequentially change medication as the disease progresses, but this is largely a ‘trial and error’ approach. Patients and their doctors ask for better prediction which TKI will work best after resistance occurs. The ROS1 patient foundation ‘Stichting Merels Wereld’ raises awareness and brings researchers together to close the knowledge gap on ROS1-driven oncogenesis and increase the options for treatment. As ROS1+ lung cancer is rare, research into resistance mechanisms and the availability of cell line models are limited. Medical Life Sciences & Diagnostics can help to improve treatment by developing new models which mimic the situation in resistant tumor cells. In the current proposal we will develop novel TKI-resistant cell lines that allow screening for improved personalized treatment with TKIs. Knowledge of specific mutations occurring after resistance will help to predict more accurately what the next step in patient treatment could be. This project is part of a long-term collaboration between the ROS1 patient foundation ‘Stichting Merels Wereld’, the departments of Pulmonary Oncology and Pathology of the UMCG and the Institute for Life Science & Technology of the Hanzehogeschool. The company Vivomicx will join our consortium, adding expertise on drug screening in complex cell systems.

Afgerond