Ageing-in-place is the preferred way of living for older individuals in an ageing society. It can be facilitated through architectural and technological solutions in the home environment. Dementia poses additional challenges when designing, constructing, or retrofitting housing facilities that support ageing-in-place. Older adults with dementia and their partners ask for living environments that support independence, compensate for declining and vitality, and lower the burden of family care. This study reports the design process of a demonstration home for people with dementia through performing a literature review and focus group sessions. This design incorporates modifications in terms of architecture, interior design, the indoor environment, and technological solutions. Current design guidelines are frequently based on small-scale studies, and, therefore, more systematic field research should be performed to provide further evidence for the efficacy of solutions. The dwellings of people with dementia are used to investigate the many aspects of supportive living environments for older adults with dementia and as educational and training settings for professionals from the fields of nursing, construction, and building services engineering.
Smart home technologies are a large potential market for the construction and building services industry. This chapter discusses the topics consultants, installers, and suppliers of home automation systems encounter when working in the field. Improved communication skills and more flexible approaches to the design and installing of building services leads to many new opportunities for new products and services. There are a large number of requirements from the perspective of architectural design and building services engineering, which relate to the infrastructure that is needed for smart homes. An overview of these electrical engineering and ICT requirements is discussed. When working with clients, it is important to consider the additional set of rules of working in their homes. Clients may have additional needs in the field of home modifications that can also be addressed when doing retrofitting projects. An outline of steps to get stared and essential questions for professional care organization is given.
LINK
Population ageing has become a domain of international discussions and research throughout the spectrum of disciplines including housing, urban planning, and real estate. Older people are encouraged to continue living in their homes in their familiar environment, and this is referred to as “ageing-in-place”. Enabling one to age-in-place requires new housing arrangements that facilitate and enable older adults to live comfortably into old age, preferably with others. Innovative examples are provided from a Dutch social housing association, illustrating a new approach to environmental design that focuses more on building new communities in conjunction with the building itself, as opposed to the occupational therapeutic approaches and environmental support. Transformation projects, referred to as “Second Youth Experiments”, are conducted using the Røring method, which is based on the principles of co-creation. De Benring in Voorst, The Netherlands, is provided as a case study of an innovative transformation project. This project shows how social and technological innovations can be integrated in the retrofitting of existing real estate for older people. It leads to a flexible use of the real estate, which makes the building system- and customer preference proof. Original article at: https://doi.org/10.3390/buildings8070089 © 2018 by the authors. Licensee MDPI.
MULTIFILE
The energy transition is a highly complex technical and societal challenge, coping with e.g. existing ownership situations, intrusive retrofit measures, slow decision-making processes and uneven value distribution. Large scale retrofitting activities insulating multiple buildings at once is urgently needed to reach the climate targets but the decision-making of retrofitting in buildings with shared ownership is challenging. Each owner is accountable for his own energy bill (and footprint), giving a limited action scope. This has led to a fragmented response to the energy retrofitting challenge with negligible levels of building energy efficiency improvements conducted by multiple actors. Aggregating the energy design process on a building level would allow more systemic decisions to happen and offer the access to alternative types of funding for owners. “Collect Your Retrofits” intends to design a generic and collective retrofit approach in the challenging context of monumental areas. As there are no standardised approaches to conduct historical building energy retrofits, solutions are tailor-made, making the process expensive and unattractive for owners. The project will develop this approach under real conditions of two communities: a self-organised “woongroep” and a “VvE” in the historic centre of Amsterdam. Retrofit designs will be identified based on energy performance, carbon emissions, comfort and costs so that a prioritisation strategy can be drawn. Instead of each owner investing into their own energy retrofitting, the neighbourhood will invest into the most impactful measures and ensure that the generated economic value is retained locally in order to make further sustainable investments and thus accelerating the transition of the area to a CO2-neutral environment.
De verplichting in de Binnenvaart om haar emissies te reduceren leidt tot grote uitdagingen in de sector, omdat nieuwe technologie in bestaande schepen tot problemen leidt en vaak een te grote investering vraagt. VIV, de branchevereniging van inbouw-, reparatie- en revisiebedrijven, heeft zich uitgesproken voor het gebruik van hernieuwbare methanol. Het ontbreekt de bedrijven echter aan kennis en vaardigheid over de conversie van een bestaande dieselmotor naar hernieuwbare methanol. De methanol industrie, verenigd in het Methanol Institute, zet zich in voor het gebruik van methanol in de scheepvaart. In de Zeevaart is al ervaring opgedaan met hernieuwbare methanol, maar de schaal en technologie verschilt met die in onze Binnenvaart. VIV en het Methanol Institute hebben de HAN benaderd met de vraag om de kennis en vaardigheid in gebruik van hernieuwbare methanol in scheepsmotoren te vergroten. De HAN beantwoordt deze marktvraag in 4 werkpakketten waar het draait om de retrofit conversie van een bestaande binnenvaartaandrijving, op een praktisch toepasbare manier. Ze maakt hier een vertaalslag van de wetenschap en kennis bij grote zeevaartmotoren, naar het binnenvaart-MKB. Dit gebeurt door te onderzoeken binnen welke kaders, en met welke indicatoren tijdens het afstellen van een onderzoeksmotor, een optimale methanol dual-fuel motor opgezet kan worden. Het hoofddoel is het verhogen van de kennis en vaardigheid over dual-fuel motoren op Hernieuwbare Methanol in de reparatie- en revisiesector. Het Schoon Schip project combineert de opgedane kennis met kennis uit de academische wereld, en de motorervaring van alle partners, om tot een betrouwbare toepassing van methanol in de binnenvaart te komen. Het gaat er om tot een werkende praktijkoplossing te komen voor het gebruik van hernieuwbare methanol in de bestaande vloot van 12.000 binnenvaartschepen.