Electrohydrodynamic atomization (EHDA) is a technique which uses the influence of strong electric fields to manipulate the break-up of a liquid, pumped through a capillary nozzle, into droplets. In this work, an extended description of a specific high flow EHDA mode, known as the simple-jet mode, is presented. In it, a review of different works published about the mode is presented as well as results about the droplet population generated with varicose and whipping break-up using water as the atomized liquid. Additionally, experiments were conducted to investigate whether such atomization method could be used to improve the efficiency of droplet inair evaporation, using a single effect evaporation chamber coupled with a EHDA multinozzle system functioning as a shower head. The liquid used in these experiments was a solution of water and NaCl (35 g L−1) to simulate sea water average concentrations. The results have shown that, the manipulation of the droplet diameter, droplet size distribution and spray angle, provided by EHDA, could improve the droplet evaporation efficiency by up to 40% when combinedwith, e.g. forced convection and higher inlet temperatures.
MULTIFILE
When addressing urban heat problems, climate- conscious urban design has been assuming that urban water bodies such as canals, ditches or ponds cool down their surroundings. Recent research shows that this is not necessarily the case and that urban water bodies may actually have a warming e ect, particularly during late summer season nights. There are however indications that water can have a cooling potential if brought together with the right shading, evaporation and ventilation strategies. Yet, it is not clear how this should be achieved. Knowledge on such spatial configurations should thus be developed and made available to design practice. This challenge is directly addressed by the “REALCOOL” project, a research aiming to define design prototypes showing the physical processes behind the e ective cooling potential of urban water bodies, that design professionals can take as conceptual design frameworks.
This paper presents five design prototypes for cool urban water environments developed in the 'Really cooling water bodies in cities' (REALCOOL) project. The REALCOOL prototypes address an urgent need: urban water bodies, such as ponds or canals, are often assumed to cool down their surroundings during days with heat stress, whereas recent research shows that this is not always the case and that urban water bodies may actually have warming effects too. There are, however, indications that shading, vaporising water, and proper ventilation can keep water bodies and their surroundings cooler. Yet, it is necessary to explore how these strategies can be optimally combined and how the resulting design guidelines can be communicated to design professionals. The REALCOOL prototypes communicate the spatial layout and biometeorological effects of such combinations and assist design decisions dealing with urban water environments. The micrometeorological simulations with Envimet showed that the prototypes led to local reductions on daytime PET from 1 °C to 7 °C, upon introducing shade. Water mist and fountains were also cooling solutions. The important role of ventilation was confirmed. The paper discusses and concludes about the use of the prototypes as tools for urban design practice.
In line with the ‘Natuur- en milieubeleidsplan Caribisch Nederland 2020-2030 (NMBP)’ the consortium intends with this research proposal to contribute to a prosperous society with a resilient population and healthy natural environment. The Caribbean Netherlands are dealing with a situation where imported vegetables and fruits are mostly imported and hardly affordable. This leads to consuming unhealthy food and high obesities rates as a consequence. A lack of good agricultural practices with regard to water-smart and nature inclusive agriculture, as well as limited coping capacities to deal with hazards and climate change, results in very limited local production and interest. Initiatives that focused only on agrotechnological solutions for food resilient futures turned out to be ineffective due to a lack of local ownership, which jeopardizes sustainability. Moreover, the ‘green’ and ‘blue’ domains are not seen as attractive career perspectives among youth, hampering a bright future for those domains. The aim of this research is to contribute to water-smart and nature inclusive food resilience embedded in a local participatory perspective in the Caribbean Netherlands. To address the above challenges, a living lab approach is adopted, where youth will be trained as (co)-facilitators (WP1) who will contribute to a participatory envisioning process and an articulation of food resilient futures (WP2). Finally, based on the envisioning process local stakeholders will select and implement experiments for food resilient futures followed by dissemination of results among key stakeholders as well as children and youth at the BES islands (WP3). This project strategy will lead to a network of a living lab where professionals and youth work together on food resilient futures. Training manuals and the results of experiments with regard to water and food system alternatives will be used actively to encourage youth to be involved in sustainable agriculture and consumption.
HCA Groenvermogen NL vormt de aanleiding en het kader voor het aanstellen van Regionale Liaisons en het opstellen van Regionale Roadmapsin zes regio’s. Deze hebben als rol en functie de regio’s te mobiliseren voor Learning Communities en de uitwisseling binnen het Nationale Kennisplatform. Hierbij is Chemelot geïdentificeerd als één van die zes regio’s, en is Zuyd Hogeschool benaderd om een aanvraag voor te bereiden. ▪ Chemelot is een interessante locatie voor een doorgedreven inzet van Learning Communities op het gebied van waterstof. Waterstof is een belangrijk grondstof in de chemie en wordt vandaag geproduceerd uit aardgas. Ambitie is tegen 2050 duurzame waterstof zonder CO2- emissies te produceren. Samen met elektrificatie zal duurzame waterstof de energie- en grondstoffentransitie op Chemelot vormgeven. Daarnaast is op Chemelot reeds 10 jaar de Chemelot Innovation and Learning Labs (CHILL) actief, een publiek-private samenwerking tussen Universiteit Maastricht, Vista college, Zuyd Hogeschool en bedrijven als DSM, Sabic en Fibrant, en als dusdanig een Learning Community voor de verduurzaming van de chemie. ▪ De transitie naar een duurzame chemie is de inzet van de brede triple alliantie Chemelot Circular Hub (CCH) en haar Circulaire Economie Actieplan (CEAP). De CEAP vormt het referentiekader voor de verdere uitwerking van de Regionale Roadmap, met als focus het binden van talenten, aantrekken van gamechangers, topfaciliteiten voor onderzoek en innovatie incl. digitalisering. Het Regionale Liaisons-team is samengesteld uit experten vanuit de onderwijsinstellingen, CHILL, Brightsite en de CCH- programmamanager. Het team wordt ingebed in de CCH-governance, wat de afstemming met andere projecten binnen o.a. het Groeifonds en JTF borgt. Tot slot spiegelt onze aanpak zich aan de werkstromen binnen HCA GroenvermogenNL, dit in functie van een sterke synergie tussen regionale en nationale acties. Verdiepen van de kennisbasis, versterken van de samenwerking en versnellen van innovatieve onderwijs- en arbeidsmarktinitiatieven zijn hierin leidende principes.