AIM: To systematically review the available literature on the diagnostic accuracy of questionnaires and measurement instruments for headaches associated with musculoskeletal symptoms.DESIGN: Articles were eligible for inclusion when the diagnostic accuracy (sensitivity/specificity) was established for measurement instruments for headaches associated with musculoskeletal symptoms in an adult population. The databases searched were PubMed (1966-2018), Cochrane (1898-2018) and Cinahl (1988-2018). Methodological quality was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool (QUADAS-2) and COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist for criterion validity. When possible, a meta-analysis was performed. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) recommendations were applied to establish the level of evidence per measurement instrument.RESULTS: From 3450 articles identified, 31 articles were included in this review. Eleven measurement instruments for migraine were identified, of which the ID-Migraine is recommended with a moderate level of evidence and a pooled sensitivity of 0.87 (95% CI: 0.85-0.89) and specificity of 0.75 (95% CI: 0.72-0.78). Six measurement instruments examined both migraine and tension-type headache and only the Headache Screening Questionnaire - Dutch version has a moderate level of evidence with a sensitivity of 0.69 (95% CI 0.55-0.80) and specificity of 0.90 (95% CI 0.77-0.96) for migraine, and a sensitivity of 0.36 (95% CI 0.21-0.54) and specificity of 0.86 (95% CI 0.74-0.92) for tension-type headache. For cervicogenic headache, only the cervical flexion rotation test was identified and had a very low level of evidence with a pooled sensitivity of 0.83 (95% CI 0.72-0.94) and specificity of 0.82 (95% CI 0.73-0.91).DISCUSSION: The current review is the first to establish an overview of the diagnostic accuracy of measurement instruments for headaches associated with musculoskeletal factors. However, as most measurement instruments were validated in one study, pooling was not always possible. Risk of bias was a serious problem for most studies, decreasing the level of evidence. More research is needed to enhance the level of evidence for existing measurement instruments for multiple headaches.
After being hospitalised, 30–60% of older patients experience a decline in functioning, resulting in a decreased quality of life and autonomy. The objective of this study was to establish a screening instrument for identifying older hospitalised patients at risk for functional decline by comparing the predictive values of three screening instruments: identification of seniors at risk, care complexity prediction instrument and hospital admission risk profile.
Risk assessment plays an important role in forensic mental health care. The way the conclusions of those risk assessments are communicated varies considerably across instruments. In an effort to make them more comparable, Hanson, R. K., Bourgon, G., McGrath, R., Kroner, D. D., Amora, D. A., Thomas, S. S., & Tavarez, L. P. [2017. A five-level risk and needs system: Maximizing assessment results in corrections through the development of a common language. The Council of State Governments Justice Center. https:// csgjusticecenter.org/wp-content/uploads/2017/01/A-Five-Level-Risk-and-Needs-system_Report.pdf] developed the Five-Level Risk and Needs System, placing the conclusions of different instruments along five theoretically meaningful levels. The current study explores a Five-Level Risk and Needs system for violent recidivism to which the numerical codings of the HCR-20 Version 2 and its successor, the HCR-20V3 are calibrated, using a combined sample from six previous studies for the HCR-20 Version 2 (n = 411 males with a violent index offence) and a pilot sample for the HCR-20V3 (n = 66 males with a violent index offence). Baselines for the five levels were defined by a combination of theoretical (e.g. expert meetings) and empirical (e.g. literature review) considerations. The calibration of the HCR-20 Version 2 was able to detect four levels, from a combined level I/II to an adjusted level V. The provisional calibration of the HCR-20V3 showed a substantial overlap with the HCR-20 Version 2, with each level boundary having a 2-point difference. Implications for practice and future research are discussed.