Thirty to sixty per cent of older patients experience functional decline after hospitalisation, associated with an increase in dependence, readmission, nursing home placement and mortality. First step in prevention is the identification of patients at risk. The objective of this study is to develop and validate a prediction model to assess the risk of functional decline in older hospitalised patients.
DOCUMENT
The timely detection of post-stroke depression is complicated by a decreasing length of hospital stay. Therefore, the Post-stroke Depression Prediction Scale was developed and validated. The Post-stroke Depression Prediction Scale is a clinical prediction model for the early identification of stroke patients at increased risk for post-stroke depression. he study included 410 consecutive stroke patients who were able to communicate adequately. Predictors were collected within the first week after stroke. Between 6 to 8 weeks after stroke, major depressive disorder was diagnosed using the Composite International Diagnostic Interview. Multivariable logistic regression models were fitted. A bootstrap-backward selection process resulted in a reduced model. Performance of the model was expressed by discrimination, calibration, and accuracy.
LINK
Abstract Background: COVID-19 was first identified in December 2019 in the city of Wuhan, China. The virus quickly spread and was declared a pandemic on March 11, 2020. After infection, symptoms such as fever, a (dry) cough, nasal congestion, and fatigue can develop. In some cases, the virus causes severe complications such as pneumonia and dyspnea and could result in death. The virus also spread rapidly in the Netherlands, a small and densely populated country with an aging population. Health care in the Netherlands is of a high standard, but there were nevertheless problems with hospital capacity, such as the number of available beds and staff. There were also regions and municipalities that were hit harder than others. In the Netherlands, there are important data sources available for daily COVID-19 numbers and information about municipalities. Objective: We aimed to predict the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants per municipality in the Netherlands, using a data set with the properties of 355 municipalities in the Netherlands and advanced modeling techniques. Methods: We collected relevant static data per municipality from data sources that were available in the Dutch public domain and merged these data with the dynamic daily number of infections from January 1, 2020, to May 9, 2021, resulting in a data set with 355 municipalities in the Netherlands and variables grouped into 20 topics. The modeling techniques random forest and multiple fractional polynomials were used to construct a prediction model for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants per municipality in the Netherlands. Results: The final prediction model had an R2 of 0.63. Important properties for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants in a municipality in the Netherlands were exposure to particulate matter with diameters <10 μm (PM10) in the air, the percentage of Labour party voters, and the number of children in a household. Conclusions: Data about municipality properties in relation to the cumulative number of confirmed infections in a municipality in the Netherlands can give insight into the most important properties of a municipality for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants in a municipality. This insight can provide policy makers with tools to cope with COVID-19 and may also be of value in the event of a future pandemic, so that municipalities are better prepared.
LINK
The postdoc candidate, Sondos Saad, will strengthen connections between research groups Asset Management(AM), Data Science(DS) and Civil Engineering bachelor programme(CE) of HZ. The proposed research aims at deepening the knowledge about the complex multidisciplinary performance deterioration prediction of turbomachinery to optimize cleaning costs, decrease failure risk and promote the efficient use of water &energy resources. It targets the key challenges faced by industries, oil &gas refineries, utility companies in the adoption of circular maintenance. The study of AM is already part of CE curriculum, but the ambition of this postdoc is that also AM principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop an AM material science line and will facilitate applied research experiences for students, in collaboration with engineering companies, operation &maintenance contractors and governmental bodies. Consequently, a new generation of efficient sustainability sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment being more sustainable with less CO2 footprint, with possible connections with other fields of study, such as Engineering, Economics &Chemistry. The project is also strongly contributing to the goals of the National Science Agenda(NWA), in themes of “Circulaire economie en grondstoffenefficiëntie”,”Meten en detecteren: altijd, alles en overall” &”Smart Industry”. The final products will be a framework for data-driven AM to determine and quantify key parameters of degradation in performance for predictive AM strategies, for the application as a diagnostic decision-support toolbox for optimizing cleaning &maintenance; a portfolio of applications &examples; and a new continuous learning line about AM within CE curriculum. The postdoc will be mentored and supervised by the Lector of AM research group and by the study programme coordinator(SPC). The personnel policy and job function series of HZ facilitates the development opportunity.
Predictive maintenance, using data of thousands of sensors already available, is key for optimizing the maintenance schedule and further prevention of unexpected failures in industry.Current maintenance concepts (in the maritime industry) are based on a fixed maintenance interval for each piece of equipment with enough safety margin to minimize incidents. This means that maintenance is most of the time carried out too early and sometimes too late. This is in particular true for maintenance on maritime equipment, where onshore maintenance is strongly preferred over offshore maintenance and needs to be aligned with the vessel’s operations schedule. However, state-of-the-art predictive maintenance methods rely on black-box machine learning techniques such as deep neural networks that are difficult to interpret and are difficult to accept and work with for the maintenance engineers. The XAIPre project (pronounce Xyper) aims at developing Explainable Predictive Maintenance algorithms that do not only provide the engineers with a prediction but in addition, with a risk analysis on the components when delaying the maintenance, and what the primary indicators are that the algorithms use to create inference. To use predictive maintenance effectively in Maritime operations, the predictive models and also the optimization of the maintenance schedule using these models, need to be aware of the past and planned vessel activities, since different activities affect the lifetime of the machines differently. For example, the degradation of a hydraulic pump inside a crane depends on the type of operations the crane but also the vessel is performing. Thus the models do not only need to be explainable but they also need to be aware of the context which is in this case the vessel and machinery activity. Using sensor data processing and edge-computing technologies that will be developed and applied by the Hanze University of Applied Sciences in Groningen (Hanze UAS), context information is extracted from the raw sensor data. The XAIPre project combines these Explainable Context Aware Machine Learning models with state-of-the-art optimizers, that are already developed and available from the NWO CIMPLO project at LIACS, in order to develop optimal maintenance schedules for machine components. The resulting XAIPre prototype offers significant competitive advantages for maritime companies such as Heerema, by increasing the longevity of machine components, increasing worker safety and decreasing maintenance costs.
Predictive maintenance, using data of thousands of sensors already available, is key for optimizing the maintenance schedule and further prevention of unexpected failures in industry. Current maintenance concepts (in the maritime industry) are based on a fixed maintenance interval for each piece of equipment with enough safety margin to minimize incidents. This means that maintenance is most of the time carried out too early and sometimes too late. This is in particular true for maintenance on maritime equipment, where onshore maintenance is strongly preferred over offshore maintenance and needs to be aligned with the vessel’s operations schedule. However, state-of-the-art predictive maintenance methods rely on black-box machine learning techniques such as deep neural networks that are difficult to interpret and are difficult to accept and work with for the maintenance engineers. The XAIPre project (pronounce “Xyper”) aims at developing Explainable Predictive Maintenance (XPdM) algorithms that do not only provide the engineers with a prediction but in addition, with 1) a risk analysis on the components when delaying the maintenance, and 2) what the primary indicators are that the algorithms used to create inference. To use predictive maintenance effectively in Maritime operations, the predictive models and the optimization of the maintenance schedule using these models, need to be aware of the past and planned vessel activities, since different activities affect the lifetime of the machines differently. For example, the degradation of a hydraulic pump inside a crane depends on the type of operations the crane performs. Thus, the models do not only need to be explainable but they also need to be aware of the context which is in this case the vessel and machinery activity. Using sensor data processing and edge-computing technologies that will be developed and applied by the Hanze UAS in Groningen, context information is extracted from the raw sensor data. The XAIPre project combines these Explainable Context Aware Machine Learning models with state-of-the-art optimizers, that we already developed in the NWO CIMPLO project at LIACS, in order to develop optimal maintenance schedules for machine components. The optimizers will be adapted to fit within XAIPre. The resulting XAIPre prototype offers significant competitive advantages for companies such as Heerema, by increasing the longevity of machine components, increasing worker safety, and decreasing maintenance costs. XAIPre will focus on the predictive maintenance of thrusters, which is a key sub-system with regards to maintenance as it is a core part of the vessels station keeping capabilities. Periodic maintenance is currently required in fixed intervals of 5 years. XPdM can provide a solid base to deviate from the Periodic Maintenance prescriptions to reduce maintenance costs while maintaining quality. Scaling up to include additional components and systems after XAIPre will be relatively straightforward due to the accumulated knowledge of the predictive maintenance process and the delivered methods. Although the XAIPre system will be evaluated on the use-cases of Heerema, many components of the system can be utilized across industries to save maintenance costs, maximize worker safety and optimize sustainability.