The project X-TEAM D2D (extended ATM for door-to-door travel) has been funded by SESAR JU in the framework of the research activities devoted to the investigation of integration of Air Traffic Management (ATM) and aviation into a wider transport system able to support the implementation of the door-to-door (D2D) travel concept. The project defines a concept for the seamless integration of ATM and Air Transport into an intermodal network, including other available transportation means, such as surface and waterways, to contribute to the 4 h door-to-door connectivity targeted by the European Commission in the ACARE SRIA FlightPath 2050 goals. In particular, the project focused on the design of a concept of operations for urban and extended urban (up to regional) integrated mobility, taking into account the evolution of transportation and passengers service scenarios for the next decades, according to baseline (2025), intermediate (2035) and final target (2050) time horizons. The designed ConOps encompassed both the transportation platforms integration concepts and the innovative seamless Mobility as a Service, integrating emerging technologies, such as Urban Air Mobility (e.g., electric vertical take-off and landing vehicles) and new mobility forms (e.g., micromobility vehicles) into the intermodal traffic network, including Air Traffic Management (ATM) and Unmanned Traffic Management (UTM). The developed concept has been evaluated against existing KPAs and KPIs, implementing both qualitative and quantitative performance assessment approaches, while also considering specific performance metrics related to transport integration efficiency from the passenger point of view, being the proposed solution designed to be centered around the passenger needs. The aim of this paper is to provide a description of the activities carried out in the project and to present at high level the related outcomes.
How can transport and land-use transitions in urban regions be understood and supported? This question is increasingly relevant for researchers and policy makers alike given the growing urgency of sustainability issues confronting cities and the limited improvements can be observed despite continued policy attention, for example Transit-oriented development policies. To tackle this question, this thesis draws on theories and concepts from transition studies. This has led to a richer conceptualisation of transitions and the extent to which policy makers can actively influence them. Transport and land-use transitions can be seen as resulting from the interaction between established and novel structures and practices and exogenous developments. In historic case studies carried out in Munich and Zürich, we see that in transitions that have taken place troubles, or difficulties that people experience in their daily lives, play an important role in focusing political debates. In the process of reaching consensus regarding problems and solutions, interest groups, coalition building and both implicit and explicit societal rules open to conflict and supportive of its resolution play a pivotal role. To aid in supporting transition attempts, a reflexive planning approach has been developed and tested in the region of Amsterdam. The breadth of the focus in this approach in terms of developments considered and actors involved resulted in potential solutions that differed from traditional policy in terms of innovativeness and the extent of support for them.
Abstract: Last few years the hindrance, accidents, pollution and other negative side effects of construction projects and namely construction transport have become an issue particularly in urban areas across Europe such as in London, and in the Netherlands as well, including the cities of Utrecht, Rotterdam and Amsterdam. Municipalities have issued new legislation and stricter conditions for vehicles to be able to access cities and city centres in particular and accessibility of older and polluting vehicles. Considerate clients, public as well private, have started developing tender policies to encourage contractors to reduce the environmental impact of construction projects. Contractors and third party logistics providers have started applying consolidation centres. These developments have shown considerable reductions of number of vehicles needed to deliver goods and to transport workers to site. In addition these developments have led to increased transport efficiency, labour productivity and cost reductions on site as well as down the supply chain. Besides these developments have led to increased innovations in the field of logistics planning software, use of ICT , and handling hardware and equipment. This paper gives an overview of current developments and applications in the field of construction logistics in the Netherlands, and in a few project cases in particular. Those cases are underway as part of an ongoing applied research project and studied by using an ethnographic participative action research approach. The case findings and project results show initial advantages how the projects, the firms involved and the environment can profit from the advancement of logistics management leading to reduced environmental impact and increased efficiencies of construction transport.
Our country contains a very dense and challenging transport and mobility system. National research agendas and roadmaps of multiple sectors such as HTSM, Logistics and Agri&food, promote vehicle automation as a means to increase transport safety and efficiency. SMEs applying vehicle automation require compliance to application/sector specific standards and legislation. A key aspect is the safety of the automated vehicle within its design domain, to be proven by manufacturers and assessed by authorities. The various standards and procedures show many similarities but also lead to significant differences in application experience and available safety related solutions. For example: Industrial AGVs (Automated Guided Vehicles) have been around for many years, while autonomous road vehicles are only found in limited testing environments and pilots. Companies are confronted with an increasing need to cover multiple application environments, such restricted areas and public roads, leading to complex technical choices and parallel certification/homologation procedures. SafeCLAI addresses this challenge by developing a framework for a generic safety layer in the control of autonomous vehicles that can be re-used in different applications across sectors. This is done by extensive consolidation and application of cross-sectoral knowledge and experience – including analysis of related standards and procedures. The framework promises shorter development times and enables more efficient assessment procedures. SafeCLAI will focus on low-speed applications since they are most wanted and technically best feasible. Nevertheless, higher speed aspects will be considered to allow for future extension. SafeCLAI will practically validate (parts) of the foreseen safety layer and publish the foreseen framework as a baseline for future R&D, allowing coverage of broader design domains. SafeCLAI will disseminate the results in the Dutch arena of autonomous vehicle development and application, and also integrate the project learnings into educational modules.
The building industry is a major target for resource-efficiency developments, which are crucial in European Union’s roadmaps. Using renewable materials impacts the sustainability of buildings and is set as urgent target in current architectural practice. The building industry needs renewable materials positively impacting the CO2 footprint without drawbacks. The use of wood and timber as renewable construction materials has potentials, but also drawbacks because trees need long time to grow; producing timber generates considerable waste; and the process from trees to applications in buildings requires transportation and CO2 emission. This research generates new scientific knowledge and a feasibility study for a new wood-like bio-material - made of cellulose and lignin from (local) residual biomass via i.e. 3D printing - suitable for applications in the building industry. It contributes to a sustainable built environment as it transforms waste from different sectors into a local resource to produce a low carbon-footprint bio-material for the construction sector. Through testing, the project will study the material properties of samples of raw and 3D printed material, correlating different material recipes that combine lignin and cellulose and different 3D printing production parameters. It will map the material properties with the requirements of the construction industry for different building products, indicating potentials and limits of the proposed bio-material. The project will produce new knowledge on the material properties, a preliminary production concept and an overview of potentials and limits for application in the built environment. The outcome will be used by industry to achieve a marketable new bio-material; as well as in further scientific academic research.