A group of Dutch teachers, as part of their Master’s programme, developed a game that allows teachers to break free from their day-to-day affairs and reflect on futures by designing scenarios about the future of their school. In this game-based approach the journey of scenario exploration is composed of seven steps: (1) choice of a theme and timeframe, (2) selection of key dilemmas on which two scenario axes will be based, (3) understanding the content and context of a “matrix” provided for the game, (4) setting up scenario groups, (5) developing four scenarios, (6) sharing scenarios, and (7) reflection on the scenarios.
LINK
The growth in urban population and economic upturnis leading to higher demand for construction, repairand renovation works in cities. Houses, public utilities,retail spaces, offices and infrastructure need toadapt to cope with the increasing number of residentsand visitors, urban functions and changing standards.Construction projects contribute to more attractive,sustainable and economically viable urban areas oncethey are finished. However, transport activities relatedto construction works have negative impacts on thesurrounding community if not handled appropriately.It is estimated that 15 to 20 percent of heavy goodsvehicles in cities are related to construction, and 30to 40 percent of light commercial vans [1]. In the citiesstudied in the CIVIC project, construction-relatedtransport was found to be one of the biggest challengesto improving sustainability. Smarter, cleaner and saferconstruction logistics solutions in urban areas areneeded for environmental, societal and economicreasons. However, in many European cities and metropolitanareas the sense of urgency is not evident or alack of knowledge is creating passivity.
DOCUMENT
The impact of the construction industry on the natural environment is severe, natural areas are changedinto predominantly hard solid surfaces, the energy use in the built environment is high and the industryputs huge claims on materials.
MULTIFILE
The Dutch Environmental Vision and Mobility Vision 2050 promote climate-neutral urban growth around public transport stations, envisioning them as vibrant hubs for mobility, community, and economy. However, redevelopment often increases construction, a major CO₂ contributor. Dutch practice-led projects like 'Carbon Based Urbanism', 'MooiNL - Practical guide to urban node development', and 'Paris Proof Stations' explore integrating spatial and environmental requirements through design. Design Professionals seek collaborative methods and tools to better understand how can carbon knowledge and skills be effectively integrated into station area development projects, in architecture and urban design approaches. Redeveloping mobility hubs requires multi-stakeholder negotiations involving city planners, developers, and railway managers. Designers act as facilitators of the process, enabling urban and decarbonization transitions. CARB-HUB explores how co-creation methods can help spatial design processes balance mobility, attractiveness, and carbon neutrality across multiple stakeholders. The key outputs are: 1- Serious Game for Co-Creation, which introduces an assessment method for evaluating the potential of station locations, referred to as the 4P value framework. 2-Design Toolkit for Decarbonization, featuring a set of Key Performance Indicators (KPIs) to guide sustainable development. 3- Research Bid for the DUT–Driving Urban Transitions Program, focusing on the 15-minute City Transition Pathway. 4- Collaborative Network dedicated to promoting a low-carbon design approach. The 4P value framework offers a comprehensive method for assessing the redevelopment potential of station areas, focusing on four key dimensions: People, which considers user experience and accessibility; Position, which examines the station's role within the broader transport network; Place-making, which looks at how well the station integrates into its surrounding urban environment; and Planet, which addresses decarbonization and climate adaptation. CARB-HUB uses real cases of Dutch stations in transition as testbeds. By translating abstract environmental goals into tangible spatial solutions, CARB-HUB enables scenario-based planning, engaging designers, policymakers, infrastructure managers, and environmental advocates.
The project aim is to improve collusion resistance of real-world content delivery systems. The research will address the following topics: • Dynamic tracing. Improve the Laarhoven et al. dynamic tracing constructions [1,2] [A11,A19]. Modify the tally based decoder [A1,A3] to make use of dynamic side information. • Defense against multi-channel attacks. Colluders can easily spread the usage of their content access keys over multiple channels, thus making tracing more difficult. These attack scenarios have hardly been studied. Our aim is to reach the same level of understanding as in the single-channel case, i.e. to know the location of the saddlepoint and to derive good accusation scores. Preferably we want to tackle multi-channel dynamic tracing. • Watermarking layer. The watermarking layer (how to embed secret information into content) and the coding layer (what symbols to embed) are mostly treated independently. By using soft decoding techniques and exploiting the “nuts and bolts” of the embedding technique as an extra engineering degree of freedom, one should be able to improve collusion resistance. • Machine Learning. Finding a score function against unknown attacks is difficult. For non-binary decisions there exists no optimal procedure like Neyman-Pearson scoring. We want to investigate if machine learning can yield a reliable way to classify users as attacker or innocent. • Attacker cost/benefit analysis. For the various use cases (static versus dynamic, single-channel versus multi-channel) we will devise economic models and use these to determine the range of operational parameters where the attackers have a financial benefit. For the first three topics we have a fairly accurate idea how they can be achieved, based on work done in the CREST project, which was headed by the main applicant. Neural Networks (NNs) have enjoyed great success in recognizing patterns, particularly Convolutional NNs in image recognition. Recurrent NNs ("LSTM networks") are successfully applied in translation tasks. We plan to combine these two approaches, inspired by traditional score functions, to study whether they can lead to improved tracing. An often-overlooked reality is that large-scale piracy runs as a for-profit business. Thus countermeasures need not be perfect, as long as they increase the attack cost enough to make piracy unattractive. In the field of collusion resistance, this cost analysis has never been performed yet; even a simple model will be valuable to understand which countermeasures are effective.
The Netherlands must build one million homes and retrofit eight million buildings by 2030, while halving CO₂ emissions and achieving a circular economy by 2050. This demands a shift from high-carbon materials like concrete—responsible for 8% of global CO₂ emissions—and imported timber, which inflates supply-chain emissions. Mycelium offers a regenerative, biodegradable alternative with carbon-sequestration potential and minimal energy input. Though typically used for insulation, it shows structural promise—achieving compressive strengths of 5.7 MPa and thermal conductivities of 0.03–0.05 W/(m·K). Hemp and other lignocellulosic agricultural byproducts are commonly used as substrates for mycelium composites due to their fibrous structure and availability. However, hemp (for e.g.) requires 300–500 mm of water per cycle and centralized processing, limiting its circularity in urban or resource-scarce areas. Aligned with the CLICKNL Design Power Agenda, this project explores material-driven design innovation through a load-bearing mycelium-based architectural product system, advancing circular, locally embedded construction. To reduce environmental impact, we will develop composites using regional bio-waste—viz. alienated vegetation, food waste, agriculture and port byproducts—eliminating the need for water-intensive hemp cultivation. Edible fungi like Pleurotus ostreatus (oyster mushroom) will enable dual-function systems that yield food and building material. Design is key for moving beyond a singular block to a full product system: a cluster of modular units emphasizing geometry, interconnectivity, and compatibility with other building layers. Aesthetic variation (dimension, color, texture) supports adaptable, expressive architecture. We will further assess lifecycle performance, end-of-(service)-life scenarios, and on-site fabrication potential. A 1:1 prototype at The Green Village will serve as a demonstrator, accelerating stakeholder engagement and upscaling. By contributing to the KIA mission on Social Desirability, we aim to shift paradigms—reimagining how we build, live, grow, and connect through circular architecture.