Background: Insufficient amounts of physical activity is a risk factor for (recurrent) stroke. People with a stroke or transient ischemic attack (TIA) have a high risk of recurrent stroke and have lower levels of physical activity than their healthy peers. Though several reviews have looked at the effects of lifestyle interventions on a number of risk factors of recurrent stroke, the effectiveness of these interventions to increase the amounts of physical activity performed by people with stroke or TIA are still unclear. Therefore, the research question of this study was: what is the effect of lifestyle interventions on the level of physical activity performed by people with stroke or TIA? Method: A systematic review was conducted following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Pubmed, Embase and Cumulative Index for Nursing and Allied Health Literature (CINAHL), were searched up to August 2018. Randomised controlled trials that compared lifestyle interventions, aimed to increase the amount of physical activity completed by participants with a stroke or TIA, with controls were included. The Physiotherapy Evidence Database (PEDro) score was used to assess the quality of the articles, and the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) method for the best evidence synthesis. Results: Eleven trials (n = 2403) met the inclusion criteria. The quality of the trials was mostly high, with 8 (73%) of trials scoring ≥6 on the PEDro scale. The overall best evidence syntheses showed moderate quality evidence that lifestyle interventions do not lead to significant improvements in the physical activity level of people with stroke or TIA. There is low quality evidence that lifestyle interventions that specifically target physical activity are effective at improving the levels of physical activity of people with stroke or TIA. Conclusion: Based on the results of this review, general lifestyle interventions on their own seem insufficient in improving physical activity levels after stroke or TIA. Lifestyle interventions that specifically encourage increasing physical activity may be more effective. Further properly powered trials using objective physical activity measures are needed to determine the effectiveness of such interventions.
LINK
Children’s motor competence (MC) has declined in the past decades, while sedentary behavior (SB) has increased. This study examined the association between MC and physical activity (PA) levels among primary schoolchildren. Demographics, body height and weight, MC (Athletic Skills Track), and PA levels (ActiGraph, GT3X+) were assessed among 595 children (291 boys, mean age = 9.1 years, SD = 1.1). MC was standardized into five categories: from very low to very high. PA levels were classified into SB, light PA (LPA), and moderate-to-vigorous PA (MVPA). Mixed-model analyses were conducted with PA levels as dependent variables and MC as the independent variable, while adjusting for age, gender, and body mass index (BMI) z-score on the individual level. A negative association between MC and SB and a positive association between MC and MVPA were found. The strength of both associations increased as children expressed lower or higher levels of MC. MC is an important correlate of both SB and MVPA, particularly for children with very high or low MC. Developing and improving children’s MC may contribute to spending less time in SB and more time in MVPA, particularly for high-risk groups, i.e., children with low MC. Moreover, addressing MC development and PA promotion simultaneously might create positive feedback loops for both children’s MC and PA levels.
Patients with coronary artery disease (CAD) are more sedentary compared with the general population, but contemporary cardiac rehabilitation (CR) programmes do not specifically target sedentary behaviour (SB). We developed a 12-week, hybrid (centre-based+home-based) Sedentary behaviour IntervenTion as a personaLisEd Secondary prevention Strategy (SIT LESS). The SIT LESS programme is tailored to the needs of patients with CAD, using evidence-based behavioural change methods and an activity tracker connected to an online dashboard to enable self-monitoring and remote coaching. Following the intervention mapping principles, we first identified determinants of SB from literature to adapt theory-based methods and practical applications to target SB and then evaluated the intervention in advisory board meetings with patients and nurse specialists. This resulted in four core components of SIT LESS: (1) patient education, (2) goal setting, (3) motivational interviewing with coping planning, and (4) (tele)monitoring using a pocket-worn activity tracker connected to a smartphone application and providing vibrotactile feedback after prolonged sedentary bouts. We hypothesise that adding SIT LESS to contemporary CR will reduce SB in patients with CAD to a greater extent compared with usual care. Therefore, 212 patients with CAD will be recruited from two Dutch hospitals and randomised to CR (control) or CR+SIT LESS (intervention). Patients will be assessed prior to, immediately after and 3 months after CR. The primary comparison relates to the pre-CR versus post-CR difference in SB (objectively assessed in min/day) between the control and intervention groups. Secondary outcomes include between-group differences in SB characteristics (eg, number of sedentary bouts); change in SB 3 months after CR; changes in light-intensity and moderate-to-vigorous-intensity physical activity; quality of life; and patients’ competencies for self-management. Outcomes of the SIT LESS randomised clinical trial will provide novel insight into the effectiveness of a structured, hybrid and personalised behaviour change intervention to attenuate SB in patients with CAD participating in CR.
MULTIFILE
Movebite aims to combat the issue of sedentary behavior prevalent among office workers. A recent report of the Nederlandse Sportraad reveal a concerning trend of increased sitting time among Dutch employees, leading to a myriad of musculoskeletal discomforts and significant health costs for employers due to increased sick leave. Recognizing the critical importance of addressing prolonged sitting in the workplace, Movebite has developed an innovative concept leveraging cutting-edge technology to provide a solution. The Movebite app seamlessly integrates into workplace platforms such as Microsoft Teams and Slack, offering a user-friendly interface to incorporate movement into their daily routines. Through scalable AI coaching and real-time movement feedback, Movebite assists individuals in scheduling and implementing active micro-breaks throughout the workday, thereby mitigating the adverse effects of sedentary behavior. In collaboration with the Avans research group Equal Chance on Healthy Choices, Movebite conducts user-centered testing to refine its offerings and ensure maximum efficacy. This includes testing initiatives at sports events, where the diverse crowd provides invaluable feedback to fine-tune the app's features and user experience. The testing process encompasses both quantitative and qualitative approaches based on the Health Belief Model. Through digital questionnaires, Movebite aims to gauge users' perceptions of sitting as a health threat and the potential benefits of using the app to alleviate associated risks. Additionally, semi-structured interviews delve deeper into user experiences, providing qualitative insights into the app's usability, look, and feel. By this, Movebite aims to not only understand the factors influencing adoption but also to tailor its interventions effectively. Ultimately, the goal is to create an environment encouraging individuals to embrace physical activity in small, manageable increments, thereby fostering long-term engagement promoting overall well-being.Through continuous innovation and collaboration with research partners, Movebite remains committed to empowering individuals to lead healthier, more active lifestyles, one micro-break at a time.