Industry 4.0 has placed an emphasis on real-time decision making in the execution of systems, such as semiconductor manufacturing. This article will evaluate a scheduling methodology called Evolutionary Learning Based Simulation Optimization (ELBSO) using data generated by a Manufacturing Execution System (MES) for scheduling a Stochastic Job Shop Scheduling Problem (SJSSP). ELBSO is embedded within Ordinal Optimization (OO), where in the first phase it uses a meta model, which previously was trained by a Discrete Event Simulation model of a SJSSP. The meta model used within ELBSO uses Genetic Programming (GP)-based Machine Learning (ML). Therefore, instead of using the DES model to train and test the meta model, this article uses historical data from a front-end fab to train and test. The results were statistically evaluated for the quality of the fit generated by the meta-model.
DOCUMENT
Light scattering is a fundamental property that can be exploited to create essential devices such as particle analysers. The most common particle size analyser relies on measuring the angle-dependent diffracted light from a sample illuminated by a laser beam. Compared to other non-light-based counterparts, such a laser diffraction scheme offers precision, but it does so at the expense of size, complexity and cost. In this paper, we introduce the concept of a new particle size analyser in a collimated beam configuration using a consumer electronic camera and machine learning. The key novelty is a small form factor angular spatial filter that allows for the collection of light scattered by the particles up to predefined discrete angles. The filter is combined with a light-emitting diode and a complementary metal-oxide-semiconductor image sensor array to acquire angularly resolved scattering images. From these images, a machine learning model predicts the volume median diameter of the particles. To validate the proposed device, glass beads with diameters ranging from 13 to 125 µm were measured in suspension at several concentrations. We were able to correct for multiple scattering effects and predict the particle size with mean absolute percentage errors of 5.09% and 2.5% for the cases without and with concentration as an input parameter, respectively. When only spherical particles were analysed, the former error was significantly reduced (0.72%). Given that it is compact (on the order of ten cm) and built with low-cost consumer electronics, the newly designed particle size analyser has significant potential for use outside a standard laboratory, for example, in online and in-line industrial process monitoring.
MULTIFILE
The use of Augmented Reality (AR) in industry is growing rapidly, driven by benefits such as efficiency gains and ability to overcome physical boundaries. Existing studies stress the need to take stakeholder values into account in the design process. In this study the impact of AR on stakeholders' values is investigated by conducting focus groups and interviews, using value sensitive design as a framework. Significant impacts were found on the values of safety, accuracy, privacy, helpfulness and autonomy. Twenty practical design choices to mitigate potential negative impact emerged from the study.
MULTIFILE