This paper describes the approach used to identify elderly people’s needs and attitudes towards applying ambient sensor systems for monitoring daily activities in the home. As elderly are typically unfamiliar with such ambient technology, interactive tools for explicating sensor monitoring –an interactive dollhouse and iPad applications for displaying live monitored sensor activity data– were developed and used for this study. Furthermore, four studies conducted by occupational therapists with more than 60 elderly participants –including questionnaires (n=41), interviews (n=6), user sessions (n=14) and field studies (n=2)– were conducted. The experiences from these studies suggest that this approach helped to democratically engage the elderly as end-user and identify acceptance issues.
DOCUMENT
We aim to set up a continuous low cost monitoring system for electromagnetic fields in the Netherlands, so that a trend in exposure to 5G signals can be observed. A number of options will be explored for this, such as software-defined radio and measurement nodes for specific 5G frequencies. We developed and tested low cost dedicated measurement nodes for four 5G bands: the 800, 1400, 2100 and 3500 MHz bands. Generally, the error is less than 1 dB and close to dynamic range limits (-65 to 5 dBm) the error increases to 3 dB.
DOCUMENT
Light scattering is a fundamental property that can be exploited to create essential devices such as particle analysers. The most common particle size analyser relies on measuring the angle-dependent diffracted light from a sample illuminated by a laser beam. Compared to other non-light-based counterparts, such a laser diffraction scheme offers precision, but it does so at the expense of size, complexity and cost. In this paper, we introduce the concept of a new particle size analyser in a collimated beam configuration using a consumer electronic camera and machine learning. The key novelty is a small form factor angular spatial filter that allows for the collection of light scattered by the particles up to predefined discrete angles. The filter is combined with a light-emitting diode and a complementary metal-oxide-semiconductor image sensor array to acquire angularly resolved scattering images. From these images, a machine learning model predicts the volume median diameter of the particles. To validate the proposed device, glass beads with diameters ranging from 13 to 125 µm were measured in suspension at several concentrations. We were able to correct for multiple scattering effects and predict the particle size with mean absolute percentage errors of 5.09% and 2.5% for the cases without and with concentration as an input parameter, respectively. When only spherical particles were analysed, the former error was significantly reduced (0.72%). Given that it is compact (on the order of ten cm) and built with low-cost consumer electronics, the newly designed particle size analyser has significant potential for use outside a standard laboratory, for example, in online and in-line industrial process monitoring.
MULTIFILE