The authors present the design of the shipping simulation SEL and its integration in the MSP Challenge Simulation Platform. This platform is designed to give policymakers and planners insight into the complexity of Maritime Spatial Planning (MSP) and can be used for interactive planning support. It uses advanced game technology to link real geo- and marine data with simulations for ecology, energy and shipping. The shipping sector is an important economic sector with influential stakeholders. SEL calculates the (future) impact of MSP decisions on shipping routes. This is dynamically shown in key performance indicators (e.g. route efficiencies) and visualised in heat maps of ship traffic. SEL uses a heuristic-based graph-searching algorithm to find paths from one port to another during each simulated month. The performance of SEL was tested for three sea basins: the firth of Clyde, Scotland (smallest), North Sea (with limited data) and Baltic Sea regions (largest, with most complete data). The behaviour of the model is stable and valid. SEL takes between 4 and 17 seconds to generate the desired monthly output. Experiences in 20 sessions with 302 planners, stakeholders and students indicate that SEL is a valuable addition to MSP Challenge, and thereby to MSP.
DOCUMENT
This paper presents the design of the offshore energy simulation CEL as a flow network, and its integration in the MSP Challenge 2050 simulation game platform. This platform is designed to aid learning about the key characteristics and complexity of marine or maritime spatial planning (MSP). The addition of CEL to this platform greatly AIDS MSP authorities in learning about and planning for offshore energy production, a highly topical and big development in human activities at sea. Rather than a standard flow network, CEL incorporates three additions to accommodate for the specificities of energy grids: an additional node for each team's expected energy, a split of each node representing an object into input and output parts to include the node's capacity, and bidirectional edges for all cables to enable more complex energy grid designs. Implemented with Dinic's algorithm it takes less than 30ms for the simulation to run for the average amount of grids included in an MSP Challenge 2050 game session. In this manner CEL enables MSP authorities and their energy stakeholders to use MSP Challenge 2050 for designing and testing more comprehensive offshore energy grids.
DOCUMENT
Project aimsNorthSEE aims to achieve greater coherence in Maritime Spatial Planning (processes; MSP) and in Maritime Spatial Plans (outcomes/solutions), capturing synergies and preventing incompatibilities in the North Sea Region (NSR). The project seeks to create better conditions for sustainable development of the area in the fields of shipping, energy and environmental protection. NorthSEE is possible thanks to the financial support from the Interreg North Sea Region programme of the European Union (European Regional Development Fund).Project tasks and resultsTo suggest a multi-level coordination framework capable of supporting ongoing coordination in MSP across the NSR in the long term. To develop an information and planning platform for MSP, enabling planners and stakeholders to share evidence for MSP and test different planning options in the form of scenarios based on real data. The MSP Challenge computer-supported simulation game will became this platform. To increase the capacity of stakeholders in key transnational sectors to actively contribute to MSP To align approaches for taking into account wider environmental issues in MSP To facilitate greater transnational coherence in MSP with respect to offshore energy infrastructure To achieve greater transnational coherence in using MSP to support environmental protection objectives. To facilitate greater transnational coherence in MSP with respect to shipping routes.Our roleThe Academy for Digital Entertainment (ADE) of Breda University of Applied Sciences is a full partner in this project. ADE is responsible for designing and developing the MSP Challenge simulation game concerning the NSR, as well as facilitating its application, all with the aim of developing insights befitting the project aims and thus Maritime Spatial Planning in the North Sea Region (see task 2). We therefore work closely with all NorthSEE partners to define the right requirements and ensure that the simulation game fulfills them. Multiple MSP Challenge sessions are planned to help develop insightful future scenarios and useful planning solutions for the NSR. More information about MSP Challenge is available on NorthSEE (https://northsearegion.eu/northsee) and on its own website (https://www.mspchallenge.info/).
The German-Dutch project "Young Maritime Talents" aims to inspire young people for the maritime industry and prepare them for the professional demands of the future. The goal of the consortium, consisting of ten partners and numerous associated partners on both sides of the border, is to develop strategies and measures to attract, develop, and retain young talent in the industry. This will be achieved in particular by strengthening maritime career orientation, actively facilitating suitable practical contacts, and promoting relevant future skills. The broad spectrum of perspectives and competencies of the project partners offers great potential for this. The participation of innovative companies from shipping, shipbuilding, and the port and offshore industries ensures comprehensive industry coverage.The project is aimed at all stakeholders in the field of (pre-) professional orientation and the career entry phase, i.e., from school through training or university studies to the company: from Young Maritime Talent to Young Maritime Professional.The core content of the project is a cross-border structural analysis of career orientation and the transition from school to work, as well as the development of a matching system to precisely match prospective career seekers with opportunities offered by maritime employers. Furthermore, target group-specific materials and formats are being developed to support schools and maritime companies in implementing practical programs for students and career starters. These include simulation games and various events for exchange and mutual coaching among the participating stakeholders. With these measures, the project contributes to making the maritime labour market in the German-Dutch border region more effective, inclusive, and sustainable, and to improving access to high-quality training and jobs.