Author supplied from the article: Abstract A temperature compensated hydrogen sensor was designed and made capable of detecting H2 within a broad range of 100–10.000 ppm while compensating instantaneously for large (±25 °C) temperature variations. Two related operational constraints have been simultaneously addressed: (1) Selective, and sensitive detection under large temperature changes, (2) Fast warning at low and increasing H2 levels. Accurate measurements of hydrogen concentrations were enabled by matching relevant time-constants. This was achieved with a microchip having two temperature coupled palladium nanowires. One of the H2 sensitive Pd nanowires was directly exposed to hydrogen, whilst the other nanowire was used as a temperature sensor and as a reference. A drop forging technique was used to passivate the second Pd wire against H2 sensing. Temperature effects could be substantially reduced with a digital signal processing algorithm. Measurements were done in a test chamber, enabling the hydrogen concentration to be controlled over short and long periods. An early response for H2 sensing is attainable in the order of 600 milliseconds and an accurate value for the absolute hydrogen concentration can be obtained within 15 s.
LINK
An operational amplifier based instrumentation amplifier (IA) with a common-mode rejection ratio (CMRR) independent of resistance tolerances is presented in this paper. The CMRR is determined by the operational amplifier characteristics. The IA shows a high CMRR up to 100 kHz. Moreover, since the presented IA operates in the current domain, no large internal voltage swings occur, making it an interesting choice for low-voltage applications in situations where common-mode disturbances may affect the signal processing.
from the article: The demand for a wireless CO2 solution is ever increasing. One of the biggest problems with the majority of commercial available CO2 sensors is the high energy consumption which makes them unsuitable for battery operation. Possible candidates for CO2 sensing in a low power wireless application are very limited and show a problematic calibration process. This study focuses on one of those EMF candidates, which is a Ag4RbI5 based sensor. This EMF sensor is based on the potentiometric principle and consumes no energy. The EMF cell was studied in a chamber where humidity, temperature and CO2 level could be controlled. This study gives an detailed insight in the different drift properties of the potentiometric CO2 sensor and a method to amplify the sensors signal. Furthermore, a method to minimize the several types of drift is given. With this method the temperature drift can be decreased by a factor 10, making the sensor a possible candidate for a wireless CO2 sensor network.
Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology which uses strong electric fields to manipulate liquid atomization. Among many other areas, electrospray is currently used as an important tool for biomedical applications (droplet encapsulation), water technology (thermal desalination and metal recovery) and material sciences (nanofibers and nano spheres fabrication, metal recovery, selective membranes and batteries). A complete review about the particularities of this technology and its applications was recently published in a special edition of the Journal of Aerosol Sciences [1]. Even though EHDA is already applied in many different industrial processes, there are not many controlling tools commercially available which can be used to remotely operate the system as well as identify some spray characteristics, e.g. droplet size, operational mode, droplet production ratio. The AECTion project proposes the development of an innovative controlling system based on the electrospray current, signal processing & control and artificial intelligence to build a non-visual tool to control and characterize EHDA processes.