Many studies have shown that experts possess better perceptual-cognitive skills than novices (e.g., in anticipation, decision making, pattern recall), but it remains unclear whether a relationship exists between performance on those tests of perceptual-cognitive skill and actual on-field performance. In this study, we assessed the in situ performance of skilled soccer players and related the outcomes to measures of anticipation, decision making, and pattern recall. In addition, we examined gaze behaviour when performing the perceptual-cognitive tests to better understand whether the underlying processes were related when those perceptual-cognitive tasks were performed. The results revealed that on-field performance could not be predicted on the basis of performance on the perceptual-cognitive tests. Moreover, there were no strong correlations between the level of performance on the different tests. The analysis of gaze behaviour revealed differences in search rate, fixation duration, fixation order, gaze entropy, and percentage viewing time when performing the test of pattern recall, suggesting that it is driven by different processes to those used for anticipation and decision making. Altogether, the results suggest that the perceptual-cognitive tests may not be as strong determinants of actual performance as may have previously been assumed.
The use of robots as educational tools provides a stimulating environment for students. Some robotics competitions focus on primary and secondary school aged children, and serve as motivation for students to get involved in educational robotics activities. Although very appealing, many students cannot participate on robotics competitions because they cannot afford robotics kits. Hence, several students have no access to educational robotics, especially on developing countries. To minimize this problem and contribute to education equality, we have created RoSoS Robot Soccer Simulator, in which students program virtual robots in a similar way that they would program their real ones. In this chapter we explain some technical details of RoSoS and discuss the implementation of a new league for the robotics competitions: Junior Soccer Simulation league (JSS). Because soccer is the most popular sport in the world, we believe JSS will be a strong motivator for students to get involved with robotics.
In soccer, critical match events like goal attempts can be preceded by periods of instability in the balance between the two teams' behaviours. Therefore, we determined periods of high variability in the distance between the teams' centroid positions longitudinally and laterally in an international-standard soccer match and evaluated corresponding match events. Position data were collected with AMISCO Pro®. Inter-team distance variability was calculated over a 3-s moving window. Out of the 242 match periods that exceeded the variability criterion, 51 were dead-ball situations. Match events identified through longitudinal inter-team distance primarily related to defending players moving forward-backward after a longitudinal pass. Match events identified through lateral inter-team distance mainly corresponded with defending players moving laterally following sideways passing. One of two goals and two of fourteen goal-attempts were preceded by a period of high variability. Together, periods of highly variable inter-team distance were associated with collective defensive actions and team reorganisation in dead-ball moments rather than goals or goal attempts. Inter-team dynamics quantified (mutual) reorganisation of the teams and marked teams' collective defensive ability to respond to attacking explorations. doi: 10.1080/02640414.2012.703783
LINK
Aanleiding Nieuwsuitgeverijen bevinden zich in zwaar weer. Economische malaise en toegenomen concurrentie in het pluriforme medialandschap dwingen uitgeverijen om enerzijds kosten te besparen en tegelijkertijd te investeren in innovatie. De verdere automatisering van de nieuwsredactie vormt hierbij een uitdaging. Buiten de branche ontstaan technieken die uitgeverijen hierbij zouden kunnen gebruiken. Deze zijn nog niet 'vertaald' naar gebruiksvriendelijke systemen voor redactieprocessen. De deelnemers aan het project formuleren voor dit braakliggend terrein een praktijkgericht onderzoek. Doelstelling Dit onderzoek wil antwoord geven op de vraag: Hoe kunnen bewezen en nieuw te ontwikkelen technieken uit het domein van 'natural language processing' een bijdrage leveren aan de automatisering van een nieuwsredactie en het journalistieke product? 'Natural language processing' - het automatisch genereren van taal - is het onderwerp van het onderzoek. In het werkveld staat deze ontwikkeling bekend als 'automated journalism' of 'robotjournalistiek'. Het onderzoek richt zich enerzijds op ontwikkeling van algoritmes ('robots') en anderzijds op de impact van deze technologische ontwikkelingen op het nieuwsveld. De impact wordt onderzocht uit zowel het perspectief van de journalist als de nieuwsconsument. De projectdeelnemers ontwikkelen binnen dit onderzoek twee prototypes die samen het automated-journalismsysteem vormen. Dit systeem gaat tijdens en na het project gebruikt worden door onderzoekers, journalisten, docenten en studenten. Beoogde resultaten Het concrete resultaat van het project is een prototype van een geautomatiseerd redactiesysteem. Verder levert het project inzicht op in de verankering van dit soort systemen binnen een nieuwsredactie. Het onderzoek biedt een nieuw perspectief op de manier waarop de nieuwsconsument de ontwikkeling van 'automated journalism' in Nederland waardeert. Het projectteam deelt de onderzoekresultaten door middel van presentaties voor de uitgeverijbranche, presentaties op wetenschappelijke conferenties, publicaties in (vak)tijdschriften, reflectiebijeenkomsten met collega-opleidingen en een samenvattende white paper.
The scientific challenge is about unraveling the secret of Brazilian and Dutch soccer by capturing successful elements of game play of both countries,, combining expertise from data science, computer science and sport science. Suggested features from literature, as well as several novel ones, will be considered and filtered on how they capture success in soccer. A manageable set of features will then be obtained from various available Dutch datasets (focusing on successful play). Subsequently, the same features will be used to compare playing styles between both countries. Features of game play will be approached from two different angles. The first angle (spearheaded by the Brazilian computer science partner) concerns features that capture the dynamics of game play and characterize aspects of formation on the pitch. The second angle (lead by the Dutch data science partner) will focus on how an attack is built up, and how key events (shots on goal, transitions from defenders to midfielders, etc.) can help to characterize this. For the comparison between countries data will be collected in four different age categories in Brazil and the Netherlands during official games, in order to compare (the development of) game play between both countries. Data will be collected by means of the Local Position Measurement System, for reasons of accuracy and consistency. The applied science part of this proposal is focusing on bridging the gap between fundamental science and soccer practice, i.e. coaches, trainers, clubs and federations. The outcomes of the fundamental part will be implemented in a coach-cockpit, a software application which trainers and coaches can use to (1) decide upon their strategy before a game, (2) analyze player- and team behaviour during a game enabling to adjust the strategy accordingly, and (3) choose and/or design training forms to improve player- and team behaviour.
The scientific challenge is about unraveling the secret of Brazilian and Dutch soccer by capturing successful elements of game play of both countries,, combining expertise from data science, computer science and sport science. Suggested features from literature, as well as several novel ones, will be considered and filtered on how they capture success in soccer. A manageable set of features will then be obtained from various available Dutch datasets (focusing on successful play). Subsequently, the same features will be used to compare playing styles between both countries. Features of game play will be approached from two different angles. The first angle (spearheaded by the Brazilian computer science partner) concerns features that capture the dynamics of game play and characterize aspects of formation on the pitch. The second angle (lead by the Dutch data science partner) will focus on how an attack is built up, and how key events (shots on goal, transitions from defenders to midfielders, etc.) can help to characterize this. For the comparison between countries data will be collected in four different age categories in Brazil and the Netherlands during official games, in order to compare (the development of) game play between both countries. Data will be collected by means of the Local Position Measurement System, for reasons of accuracy and consistency. The applied science part of this proposal is focusing on bridging the gap between fundamental science and soccer practice, i.e. coaches, trainers, clubs and federations. The outcomes of the fundamental part will be implemented in a coach-cockpit, a software application which trainers and coaches can use to (1) decide upon their strategy before a game, (2) analyze player- and team behaviour during a game enabling to adjust the strategy accordingly, and (3) choose and/or design training forms to improve player- and team behaviour.