Assigning gates to flights considering physical, operational, and temporal constraints is known as the Gate Assignment Problem. This article proposes the novelty of coupling a commercial stand and gate allocation software with an off-the-grid optimization algorithm. The software provides the assignment costs, verifies constraints and restrictions of an airport, and provides an initial allocation solution. The gate assignment problem was solved using a genetic algorithm. To improve the robustness of the allocation results, delays and early arrivals are predicted using a random forest regressor, a machine learning technique and in turn they are considered by the optimization algorithm. Weather data and schedules were obtained from Zurich International Airport. Results showed that the combination of the techniques result in more efficient and robust solutions with higher degree of applicability than the one possible with the sole use of them independently.
Author-supplied abstract: Developing large-scale complex systems in student projects is not common, due to various constraints like available time, student team sizes, or maximal complexity. However, we succeeded to design a project that was of high complexity and comparable to real world projects. The execution of the project and the results were both successful in terms of quality, scope, and student/teacher satisfaction. In this experience report we describe how we combined a variety of principles and properties in the project design and how these have contributed to the success of the project. This might help other educators with setting up student projects of comparable complexity which are similar to real world projects.
My research investigates the concept of permacomputing, a blend of the words permaculture and computing, as a potential field of convergence of technology, arts, environmental research and activism, and as a subject of future school curricula in art and design. This concept originated in online subcultures, and is currently restricted to creative coding communities. I study in what way permacomputing principles may be used to redefine how art and design education is taught. More generally, I want to research the potential of permacomputing as a critical, sustainable, and practical alternative to the way digital technology is being taught in art education, where students mostly rely on tools and techniques geared towards maximising productivity and mass consumption. This situation is at odds with goals for sustainable production and consumption. I want to research to what degree the concept of permacomputing can be broadened and applied to critically revised, sustainable ways of making computing part of art and design education and professional practice. This research will be embedded in the design curriculum of Willem de Kooning Academy, focused on redefining the role of artists and designers to contribute to future modes of sustainable organisation and production. It is aligned with Rotterdam University of Applied Sciences sectorplan masters VH, in particular managing and directing sustainable transitions. This research builds upon twenty years of experience in the creative industries. It is an attempt to generalise, consolidate, and structure methods and practices for sustainable art and design production experimented with while I was course director of a master programme at WdKA. Throughout the research I will be exchanging with peers and confirmed interested parties, a.o.: Het Nieuwe Instituut (NL), RUAS Creating 010 kenniscentrum (NL), Bergen Centre for Electronic Arts (NO), Mikrolabs (NO), Varia (NL), Media Arts department at RHU (UK), Media Studies at UvA (NL).