In this article we examine the experiences of the first and second author who have changed themselves to become newly attuned to the sun, or who have “become solar”. Motivated by calls to approach solar design in novel, less technocratic ways, we reflect on their one-year journey to gain a new relationship with solar energy as an explicitly more-than-human design (MTHD) approach. We argue that their perception of solar energy progressively worked to decentre them as human actors in this new solar-energy arrangement, revealing other nonhuman actors at play, instigating situations of care and attention to those nonhumans and ultimately guiding them towards what it means to be solar. For solar design, we see this approach as creating a new lens for solar designers to draw from. For MTHD, we see this acting as a practical example for designers seeking to begin transforming themselves in their own practice by taking initial steps towards a MTHD approach.
DOCUMENT
Renewable energy sources have an intermittent character that does not necessarily match energy demand. Such imbalances tend to increase system cost as they require mitigation measures and this is undesirable when available resources should be focused on increasing renewable energy supply. Matching supply and demand should therefore be inherent to early stages of system design, to avoid mismatch costs to the greatest extent possible and we need guidelines for that. This paper delivers such guidelines by exploring design of hybrid wind and solar energy and unusual large solar installation angles. The hybrid wind and solar energy supply and energy demand is studied with an analytical analysis of average monthly energy yields in The Netherlands, Spain and Britain, capacity factor statistics and a dynamic energy supply simulation. The analytical focus in this paper differs from that found in literature, where analyses entirely rely on simulations. Additionally, the seasonal energy yield profile of solar energy at large installation angles is studied with the web application PVGIS and an hourly simulation of the energy yield, based on the Perez model. In Europe, the energy yield of solar PV peaks during the summer months and the energy yield of wind turbines is highest during the winter months. As a consequence, three basic hybrid supply profiles, based on three different mix ratios of wind to solar PV, can be differentiated: a heating profile with high monthly energy yield during the winter months, a flat or baseload profile and a cooling profile with high monthly energy yield during the summer months. It is shown that the baseload profile in The Netherlands is achieved at a ratio of wind to solar energy yield and power of respectively Ew/Es = 1.7 and Pw/Ps = 0.6. The baseload ratio for Spain and Britain is comparable because of similar seasonal weather patterns, so that this baseload ratio is likely comparable for other European countries too. In addition to the seasonal benefits, the hybrid mix is also ideal for the short-term as wind and solar PV adds up to a total that has fewer energy supply flaws and peaks than with each energy source individually and it is shown that they are seldom (3%) both at rated power. This allows them to share one cable, allowing “cable pooling”, with curtailment to -for example-manage cable capacity. A dynamic simulation with the baseload mix supply and a flat demand reveals that a 100% and 75% yearly energy match cause a curtailment loss of respectively 6% and 1%. Curtailment losses of the baseload mix are thereby shown to be small. Tuning of the energy supply of solar panels separately is also possible. Compared to standard 40◦ slope in The Netherlands, facade panels have smaller yield during the summer months, but almost equal yield during the rest of the year, so that the total yield adds up to 72% of standard 40◦ slope panels. Additionally, an hourly energy yield simulation reveals that: façade (90◦) and 60◦ slope panels with an inverter rated at respectively 50% and 65% Wp, produce 95% of the maximum energy yield at that slope. The flatter seasonal yield profile of “large slope panels” together with decreased peak power fits Dutch demand and grid capacity more effectively.
DOCUMENT
The goal of this paper is twofold: i) to design a viable business model for community owned solar farms that will be setup in the north of the Netherlands. ii) To present the findings from this case study, and to propose generalisations that are relevant for the development of artefacts that can be used to facilitate the design of viable business models in a business ecosystem setting.USE 2015
DOCUMENT
Horticulture crops and plants use only a limited part of the solar spectrum for their growth, the photosynthetically active radiation (PAR); even within PAR, different spectral regions have different functionality for plant growth, and so different light spectra are used to influence different properties of the plant, such as leaves, fruiting, longer stems and other plant properties. Artificial lighting, typically with LEDs, has been used to provide these specified spectra per plant, defined by their light recipe. This light is called steering light. While the natural sunlight provides a much more sustainable and abundant form of energy, however, the solar spectrum is not tuned towards specific plant needs. In this project, we capitalize on recent breakthroughs in nanoscience to optimally shape the solar spectrum, and produce a spectrally selective steering light, i.e. convert the energy of the entire solar spectrum into a spectrum most useful for agriculture and plant growth to utilize the sustainable solar energy to its fullest, and save on artificial lighting and electricity. We will take advantage of the developed light recipes and create a sustainable alternative to LED steering light, using nanomaterials to optimally shape the natural sunlight spectrum, while maintaining the increased yields. As a proof of concept, we are targeting the compactness of ornamental plants and seek to steer the plants’ growth to reduce leaf extension and thus be more valuable. To realize this project the Peter Schall group at the UvA leads this effort together with the university spinout, SolarFoil, whose expertise lies in the development of spectral conversion layers for horticulture. Renolit - a plastic manufacturer and Chemtrix, expert in flow synthesis, provide expertise and technical support to scale the foil, while Ludvig-Svensson, a pioneer in greenhouse climate screens, provides the desired light specifications and tests the foil in a controlled setting.
Designing with the Sun is a KIEM-GoCI explorative research project on the theme Energy Transition and Sustainability. The project is aimed at network and agenda building and design research that explores new (cultural) practices of renewable energy consumption, based on a shift from ‘energy blindness’ to ‘energy awareness’. Up until now the solar industry has been propelled forward by technical innovations, offering mostly pragmatic, economic benefits to consumers. Innovation in this field mostly concerns making solar panels more efficient and less costly. However, to succeed, the energy transition also needs new cultural practices. These practices should reflect the ways renewables are different from fossil fuels. For solar, this means using more direct solar energy, when the sun is there, and being able to adapt to periods of low energy. Currently, consumers are mostly ‘blind’ to the infrastructure behind fossil-based energy. However, for energy sources such as solar and wind ‘awareness’ of their availability becomes more important. What could such an awareness look or feel like? How can it be enacted? And how can a change in practice that is more attuned to availability be experienced positively? Solar companies see opportunities in using design to help build motivating practices and narratives within the solar field, enabling awareness through personal relationships between consumer and solar energy. However, the knowledge of how to get there is lacking. In a research-through-design trajectory, and together with partners from the Creative Industries, Designing with the Sun aims to explore new ways of relating citizens to solar energy. Ultimately, these insights should enable the newly emerging field of solar design to contribute to the emergence of more sustainable and rewarding energy awareness and practices.
Road freight transport contributes to 75% of the global logistics CO2 emissions. Various European initiatives are calling for a drastic cut-down of CO2 emissions in this sector [1]. This requires advanced and very expensive technological innovations; i.e. re-design of vehicle units, hybridization of powertrains and autonomous vehicle technology. One particular innovation that aims to solve this problem is multi-articulated vehicles (road-trains). They have a smaller footprint and better efficiency of transport than traditional transport vehicles like trucks. In line with the missions for Energy Transition and Sustainability [2], road-trains can have zero-emission powertrains leading to clean and sustainable urban mobility of people and goods. However, multiple articulations in a vehicle pose a problem of reversing the vehicle. Since it is extremely difficult to predict the sideways movement of the vehicle combination while reversing, no driver can master this process. This is also the problem faced by the drivers of TRENS Solar Train’s vehicle, which is a multi-articulated modular electric road vehicle. It can be used for transporting cargo as well as passengers in tight environments, making it suitable for operation in urban areas. This project aims to develop a reverse assist system to help drivers reverse multi-articulated vehicles like the TRENS Solar Train, enabling them to maneuver backward when the need arises in its operations, safely and predictably. This will subsequently provide multi-articulated vehicle users with a sustainable and economically viable option for the transport of cargo and passengers with unrestricted maneuverability resulting in better application and adding to the innovation in sustainable road transport.