Several studies show that logistics facilities have spread spatially from relatively concentrated clusters in the 1970s to geographically more decentralized patterns away from urban areas. The literature indicates that logistics costs are one of the major influences on changes in distribution structures, or locations and usage of logistics facilities. Quantitative modelling studies that aim to describe or predict these phenomena in relation to logistics costs are lacking, however. This is relevant to design more effective policies concerning spatial development, transport and infrastructure investments as well as for understanding environmental consequences of freight transport. The objective of this paper is to gain an understanding of the responsiveness of spatial logistics patterns to changes in these costs, using a quantitative model that links production and consumption points via distribution centers. The model is estimated to reproduce observed use of logistics facilities as well as related transport flows, for the case of the Netherlands. We apply the model to estimate the impacts of a number of scenarios on the spatial spreading of regional distribution activity, interregional vehicle movements and commodity flows. We estimate new cost elasticities, of the demand for trade and transport together, as well as specifically for the demand for the distribution facility services. The relatively low cost elasticity of transport services and high cost elasticity for the distribution services provide new insights for policy makers, relevant to understand the possible impacts of their policies on land use and freight flows.
Research statementOur study analyses the factors that drive decision-making on distribution structures, including the layout of distribution channels and the locations of distribution centres. Distribution is a primary firm activity, which strongly influences logistics costs and logistics performance. Distribution is a challenging activity as customer demand is often volatile and unpredictable. Consumers continuously expect higher service related to distribution, e.g., same day delivery and more flexibility in delivery locations. Therefore, it is of strategic importance to shippers and Logistics Service Providers (LSPs) to decide which distribution channel layout to use and, accordingly, plan distribution centre location(s). Distribution structure selection concerns the number and locations of distribution centres, as part of the larger corporate planning process. The main questions we strive to answer in this paper are: (1) what are the main criteria that determine the spatial layout of distribution structures? and (2) how important are these criteria, relative to each other?Methodology The literature on distribution channel design mostly revolves around optimization methods; we are not aware of literature that takes a descriptive approach. We therefore develop a descriptive conceptual model that includes these factors, developed from the contextual literature around this decision. The second part of the study concerns the measurement of the relative importance of these factors. We implemented an elaborate survey and used the Best-Worst Method (BWM) to identify these weights. The survey considers different experts (e.g., logistics managers versus logistics professors) and population segments (e.g., in-house versus outsourced distribution).Data and resultsCurrently we are completing the survey dedicated to evaluating the above factors. We have received sufficient response to estimate a first model. These first estimations already provide useful results. Final estimations will be completed and reported in June 2017. At the I-NUF conference we will be able to present the results and analysis of all factors when comparing respondents and parameters.Preliminary conclusionsBased on literature review, eight main factors – divided into 33 sub factors – are included in our research: 1) Demand factors, 2) Service level factors, 3) Product Characteristics factors, 4) Logistics costs factors, 5) Proximity-related location factors, 6) Accessibility-related location factors, 7) Resources-related location factors and 8) Institutional factors. A number of hypotheses were built from the literature analysis relating, for example, to the relative importance of service- and cost- related factors within different industries. We will revisit these hypotheses and provide the quantitative results of the importance of the individual factors in our paper and at the conference.
Distribution structures, as studied in this paper, involve the spatial layout of the freight transport and storage system used to move goods between production and consumption locations. Decisions on this layout are important to companies as they allow them to balance customer service levels and logistics costs. Until now there has been very little descriptive research into the factors that drive decisions about these structures. Moreover, the literature on the topic is scattered across various research streams. In this paper we review and consolidate this literature, with the aim to arrive at a comprehensive list of factors. Three relevant research streams were identified: Supply Chain Management (SCM), Transportation and Geography. The SCM and Transportation literature mostly focus on distribution structure including distribution centre (DC) location selection from a viewpoint of service level and logistics costs factors. The Geography literature focuses on spatial DC location decisions and resulting patterns mostly explained by location factors such as labour and land availability. Our review indicates that the main factors that drive decision-making are “demand level”, “service level”, “product characteristics”, “logistics costs”, “labour and land”, “accessibility” and “contextual factors”. The main trade-off influencing distribution structure selection is “service level” versus “logistics costs”. Together, the research streams provide a rich picture of the factors that drive distribution structure including DC location selection. We conclude with a framework that shows the relative position of these factors. Future work can focus on completing the framework by detailing out the sub factors and empirically testing the direction and strength of relationships. Cooperation between the three research streams will be useful to further extend and operationalize the framework.
The IMPULS-2020 project DIGIREAL (BUas, 2021) aims to significantly strengthen BUAS’ Research and Development (R&D) on Digital Realities for the benefit of innovation in our sectoral industries. The project will furthermore help BUas to position itself in the emerging innovation ecosystems on Human Interaction, AI and Interactive Technologies. The pandemic has had a tremendous negative impact on BUas industrial sectors of research: Tourism, Leisure and Events, Hospitality and Facility, Built Environment and Logistics. Our partner industries are in great need of innovative responses to the crises. Data, AI combined with Interactive and Immersive Technologies (Games, VR/AR) can provide a partial solution, in line with the key-enabling technologies of the Smart Industry agenda. DIGIREAL builds upon our well-established expertise and capacity in entertainment and serious games and digital media (VR/AR). It furthermore strengthens our initial plans to venture into Data and Applied AI. Digital Realities offer great opportunities for sectoral industry research and innovation, such as experience measurement in Leisure and Hospitality, data-driven decision-making for (sustainable) tourism, geo-data simulations for Logistics and Digital Twins for Spatial Planning. Although BUas already has successful R&D projects in these areas, the synergy can and should significantly be improved. We propose a coherent one-year Impuls funded package to develop (in 2021): 1. A multi-year R&D program on Digital Realities, that leads to, 2. Strategic R&D proposals, in particular a SPRONG/sleuteltechnologie proposal; 3. Partnerships in the regional and national innovation ecosystem, in particular Mind Labs and Data Development Lab (DDL); 4. A shared Digital Realities Lab infrastructure, in particular hardware/software/peopleware for Augmented and Mixed Reality; 5. Leadership, support and operational capacity to achieve and support the above. The proposal presents a work program and management structure, with external partners in an advisory role.
Supermarkets are essential urban household amenities, providing daily products, and for their social role in communities. Contrary to many other countries, including nearby ones, the Netherlands have a balanced distribution of supermarkets across villages and urban neighbourhoods. However, spatial supermarket patterns, are subject to influential developments. First, due to economies of scale, there is a tendency for supermarkets to increase their catchment areas and to disappear from peripheral villages. Second, supermarkets are now mainly located in residential areas, although the urban periphery appears to be attractive for the retail sector, perhaps including the rise of hypermarkets. Third, today, online grocery shopping is still lagging far behind on other online shopping products, but a breaks through will dilute population support for in-store supermarkets and can lead to dramatic ‘game changer’ shifts with major spatial and social effects. These three important trends will reinforce each other. Consequences are of natural community meeting places at the expense of social cohesion; reduced accessibility for daily products, leading to more travel, often by car; increasing delivery flows; real estate vacancies, and increasing suburban demand increase for retail and logistics. Expected changes in supermarket patterns require understanding, but academic literature on OGS is still scarce, and does hardly address household behaviour in changing spatial constellations. We develop likely spatial supermarket patterns, and model the consequences for travel demand, social cohesion and real estate demand, as well as the distribution between online and in-store grocery shopping, by developing a stated preference experiment, among Dutch households.