Rationale To improve the quality of exercise-based cardiac rehabilitation (CR) in patients with chronic heart failure (CHF) a practice guideline from the Dutch Royal Society for Physiotherapy (KNGF) has been developed. Guideline development A systematic literature search was performed to formulate conclusions on the efficacy of exercise-based intervention during all CR phases in patients with CHF. Evidence was graded (1–4) according the Dutch evidence-based guideline development criteria. Clinical and research recommendations Recommendations for exercise-based CR were formulated covering the following topics: mobilisation and treatment of pulmonary symptoms (if necessary) during the clinical phase, aerobic exercise, strength training (inspiratory muscle training and peripheral muscle training) and relaxation therapy during the outpatient CR phase, and adoption and monitoring training after outpatient CR. Applicability and implementation issues This guideline provides the physiotherapist with an evidence-based instrument to assist in clinical decision-making regarding patients with CHF. The implementation of the guideline in clinical practice needs further evaluation. Conclusion This guideline outlines best practice standards for physiotherapists concerning exercise-based CR in CHF patients. Research is needed on strategies to improve monitoring and follow-up of the maintenance of a physical active lifestyle after supervised CR.
Background: Home-based exercise is an important part of physical therapy treatment for patients with low back pain. However, treatment effectiveness depends heavily on patient adherence to home-based exercise recommendations. Smartphone apps designed to support home-based exercise have the potential to support adherence to exercise recommendations and possibly improve treatment effects. A better understanding of patient perspectives regarding the use of smartphone apps to support home-based exercise during physical therapy treatment can assist physical therapists with optimal use and implementation of these apps in clinical practice. Objective: The aim of this study was to investigate patient perspectives on the acceptability, satisfaction, and performance of a smartphone app to support home-based exercise following recommendations from a physical therapist. Methods: Using an interpretivist phenomenology approach, 9 patients (4 males and 5 females; aged 20-71 years) with nonspecific low back pain recruited from 2 primary care physical therapy practices were interviewed within 2 weeks after treatment ended. An interview guide was used for the interviews to ensure that different aspects of the patients’ perspectives were discussed. The Physitrack smartphone app was used to support home-based exercise as part of treatment for all patients. Data were analyzed using the “Framework Method” to assist with interpretation of the data. Results: Data analysis revealed 11 categories distributed among the 3 themes “acceptability,” “satisfaction,” and “performance.” Patients were willing to accept the app as part of treatment when it was easy to use, when it benefited the patient, and when the physical therapist instructed the patient in its use. Satisfaction with the app was determined by users’ perceived support from the app when exercising at home and the perceived increase in adherence. The video and text instructions, reminder functions, and self-monitor functions were considered the most important aspects for performance during treatment. The patients did not view the Physitrack app as a replacement for the physical therapist and relied on their therapist for instructions and support when needed. Conclusions: Patients who use an app to support home-based exercise as part of treatment are accepting of the app when it is easy to use, when it benefits the patient, and when the therapist instructs the patient in its use. Physical therapists using an app to support home-based exercise can use the findings from this study to effectively support their patients when exercising at home during treatment.
MULTIFILE
Background: Home-based exercise is an important part of physical therapy treatment for patients with low back pain. However, treatment effectiveness depends heavily on patient adherence to home-based exercise recommendations. Smartphone apps designed to support home-based exercise have the potential to support adherence to exercise recommendations and possibly improve treatment effects. A better understanding of patient perspectives regarding the use of smartphone apps to support home-based exercise during physical therapy treatment can assist physical therapists with optimal use and implementation of these apps in clinical practice. Objective: The aim of this study was to investigate patient perspectives on the acceptability, satisfaction, and performance of a smartphone app to support home-based exercise following recommendations from a physical therapist. Methods: Using an interpretivist phenomenology approach, 9 patients (4 males and 5 females; aged 20-71 years) with nonspecific low back pain recruited from 2 primary care physical therapy practices were interviewed within 2 weeks after treatment ended. An interview guide was used for the interviews to ensure that different aspects of the patients' perspectives were discussed. The Physitrack smartphone app was used to support home-based exercise as part of treatment for all patients. Data were analyzed using the "Framework Method" to assist with interpretation of the data. Results: Data analysis revealed 11 categories distributed among the 3 themes "acceptability," "satisfaction," and "performance." Patients were willing to accept the app as part of treatment when it was easy to use, when it benefited the patient, and when the physical therapist instructed the patient in its use. Satisfaction with the app was determined by users' perceived support from the app when exercising at home and the perceived increase in adherence. The video and text instructions, reminder functions, and self-monitor functions were considered the most important aspects for performance during treatment. The patients did not view the Physitrack app as a replacement for the physical therapist and relied on their therapist for instructions and support when needed. Conclusions: Patients who use an app to support home-based exercise as part of treatment are accepting of the app when it is easy to use, when it benefits the patient, and when the therapist instructs the patient in its use. Physical therapists using an app to support home-based exercise can use the findings from this study to effectively support their patients when exercising at home during treatment.
LINK
Low back pain is the leading cause of disability worldwide and a significant contributor to work incapacity. Although effective therapeutic options are scarce, exercises supervised by a physiotherapist have shown to be effective. However, the effects found in research studies tend to be small, likely due to the heterogeneous nature of patients' complaints and movement limitations. Personalized treatment is necessary as a 'one-size-fits-all' approach is not sufficient. High-tech solutions consisting of motions sensors supported by artificial intelligence will facilitate physiotherapists to achieve this goal. To date, physiotherapists use questionnaires and physical examinations, which provide subjective results and therefore limited support for treatment decisions. Objective measurement data obtained by motion sensors can help to determine abnormal movement patterns. This information may be crucial in evaluating the prognosis and designing the physiotherapy treatment plan. The proposed study is a small cohort study (n=30) that involves low back pain patients visiting a physiotherapist and performing simple movement tasks such as walking and repeated forward bending. The movements will be recorded using sensors that estimate orientation from accelerations, angular velocities and magnetometer data. Participants complete questionnaires about their pain and functioning before and after treatment. Artificial analysis techniques will be used to link the sensor and questionnaire data to identify clinically relevant subgroups based on movement patterns, and to determine if there are differences in prognosis between these subgroups that serve as a starting point of personalized treatments. This pilot study aims to investigate the potential benefits of using motion sensors to personalize the treatment of low back pain. It serves as a foundation for future research into the use of motion sensors in the treatment of low back pain and other musculoskeletal or neurological movement disorders.