Background Physical activity after bariatric surgery is associated with sustained weight loss and improved quality of life. Some bariatric patients engage insufficiently in physical activity. The aim of this study was to examine whether and to what extent both physical activity and exercise cognitions have changed at one and two years post-surgery, and whether exercise cognitions predict physical activity. Methods Forty-two bariatric patients (38 women, 4 men; mean age 38 ± 8 years, mean body mass index prior to surgery 47 ± 6 kg/m²), filled out self-report instruments to examine physical activity and exercise cognitions pre- and post surgery. Results Moderate to large healthy changes in physical activity and exercise cognitions were observed after surgery. Perceiving less exercise benefits and having less confidence in exercising before surgery predicted less physical activity two years after surgery. High fear of injury one year after surgery predicted less physical activity two years after surgery. Conclusion After bariatric surgery, favorable changes in physical activity and exercise cognitions are observed. Our results suggest that targeting exercise cognitions before and after surgery might be relevant to improve physical activity.
MULTIFILE
Purpose The purpose of this research was to explore women’s experiences after breast surgery with scar characteristics and symptoms, and its impact on their health-related quality of life (HRQOL). Material andmethods A qualitative study using semi-structured face-to-face interviewswas conducted among women following prophylactic, oncologic, or reconstructive breast surgery in the Netherlands. A directed content analysis was performed using guiding themes. Themes were “physical and sensory symptoms,” “impact of scar symptoms,” “personal factors,” “impact of scar interventions,” and “change over time.” Results The study population consisted of 26 women after breast surgery. Women experienced a wide range of symptoms like adherence, stiffness, pain, and uncomfortable sensations. Scar characteristics as visibility, location, texture, and size, influenced satisfaction with their appearance. The impact of scar symptoms is reflected in physical, social, emotional, and cognitive functioning, thereby affecting HRQOL. The experienced impact on HRQOL depended on several factors, like personal factors as the degree of acceptance and environmental factors like social support. Conclusion Women can experience a diversity of scar characteristics and symptoms, which play a central role in the perceived impact on HRQOL. Since scarring can have a considerable impact on HRQOL, scarring after prophylactic, oncologic and reconstructive breast surgery should be given more attention in clinical practice and research. Implications for Cancer Survivors Considering scarring as a common late effect after breast surgery and understanding the variety of experiences, which could impact HRQOL of women, can be beneficial in sufficient information provision, expectation management, and informed decision making.
DOCUMENT
Patients undergoing major surgery are at risk of complications and delayed recovery. Prehabilitation has shown promise in improving postoperative outcomes. Offering prehabilitation by means of mHealth can help overcome barriers to participating in prehabilitation and empower patients prior to major surgery. We developed the Be Prepared mHealth app, which has shown potential in an earlier pilot study.
MULTIFILE
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
The anterior cruciate ligament (ACL) is a strong rope-like tissue which connects the femur to the tibia in the knee joint. Its function is to provide structural stability to the knee while preventing unnatural forward movement of the tibia relative to the femur. Acute complete ACL ruptures during movements like knee hyperextension or sudden changes of direction (pivoting) damage two entities: the ligament itself and its nerve connections to the posterior tibial nerve (PTN). PTN innervation in the ACL is essential for: a) proprioception (e.g. perception of position and movement/acceleration experienced by the ligament), and b) stability of the knee joint. Upon ACL rupture, the orthopedic surgeon reconstructs the ACL with a graft from the hamstring, patellar or quadriceps tendon. After the surgery, the goal is to regain neuromuscular control and dynamic stabilization during rehabilitation as soon as possible for a quick return to sports and daily activities. However, surgeons are not able to reconstruct the nerve gap between the PTN and the grafted ligament due to the microscopic size of the innervation in the ACL. Not linking the PTN to the graft creates a disconnection between the knee joint and the spinal cord. To mitigate these disadvantages in ACL surgery, this study focuses on activating the growth of proprioception nerve endings using a ligament loaded with growth factors (neurotrophins). We hypothesize that neurotrophins will activate proprioceptive fibers of neurons close to the ACL. We describe graft fabrication steps and in vitro experiments to expand on the regeneration capacity of a commercially available ACL-like synthetic ligament called LARS. The results will bring the ACL regeneration field closer to having a graft that can aid patients in regaining mobility and stability during locomotion and running, confidence in the strength of the knee joint, and quick return to sports.
Een goede voorbereiding is het halve werk, ook voor patiënten op de wachtlijst voor een chirurgische ingreep. We onderzoeken hoe de e-health-applicatie 'Beter Voorbereid' mensen helpt om sterker aan de start van een operatie te staan en zo sneller te herstellen.