Tijdens het Futurelab VR Maestros is door het Expertisecentrum Creatieve Technologie onderzocht wat virtual reality-ervaringen kunnen toevoegen aan de praktijk van musici. Het lab vond plaats van 11 tot en met 13 april 2017 op HKU Utrechts Conservatorium.Aan het driedaagse experiment deden docenten, studenten en onderzoekers van HKU mee. Eén van de doelen was testen of het mogelijk is een muzikant met behulp van virtual reality plaats te laten nemen in een eerder opgenomen orkestomgeving of ensemble. Ook vergeleken de deelnemers verschillende microfoon-, opname-, streaming- en mixage-technieken in de context van Virtual Reality.
MULTIFILE
Electromagnetic articulography (EMA) is one of the instrumental phonetic research methods used for recording and assessing articulatory movements. Usually, articulographic data are analysed together with standard audio recordings. This paper, however, demonstrates how coupling the articulograph with devices providing other types of information may be used in more advanced speech research. A novel measurement system is presented that consists of the AG 500 electromagnetic articulograph, a 16-channel microphone array with a dedicated audio recorder and a video module consisting of 3 high-speed cameras. It is argued that synchronization of all these devices allows for comparative analyses of results obtained with the three components. To complement the description of the system, the article presents innovative data analysis techniques developed by the authors as well as preliminary results of the system’s accuracy.
The Netherlands is facing great challenges to achieve (inter)national climate mitigation objectives in limited time, budget and space. Drastic innovative measures such as floating solar parks are high on political agendas and are entering our water systems . The clear advantages of floating solar (multifunctional use of space) led to a fast deployment of renewable energy sources without extensive research to adequately evaluate the impacts on our environment. Acquisition of research data with holistic monitoring methods are urgently needed in order to prevent disinvestments. In this proposal ten SMEs with different expertise and technologies are joining efforts with researchers and four public parties (and 12 indirectly involved) to answer the research question “Which monitoring technologies and intelligent data interpretation techniques are required to be able to conduct comprehensive, efficient and cost-effective monitoring of the impacts of floating solar panels in their surroundings?" The outputs after a two-year project will play a significant and indispensable role in making Green Energy Resources Greener. Specific output includes a detailed inventory of existing projects, monitoring method for collection/analysis of datasets (parameters/footage on climate, water quality, ecology) on the effects of floating solar panels on the environment using heterogeneous unmanned robots, workshops with public & private partners and stakeholders, scientific and technical papers and update of national guidelines for optimizing the relationship between solar panels and the surrounding environment. Project results have a global interest and the consortium partners aim at upscaling for the international market. This project will enrich the involved partners with their practical knowledge, and SMEs will be equipped with the new technologies to be at the forefront and benefit from the increasing floating solar market opportunities. This project will also make a significant contribution to various educational curricula in universities of applied sciences.
The demand for mobile agents in industrial environments to perform various tasks is growing tremendously in recent years. However, changing environments, security considerations and robustness against failure are major persistent challenges autonomous agents have to face when operating alongside other mobile agents. Currently, such problems remain largely unsolved. Collaborative multi-platform Cyber- Physical-Systems (CPSs) in which different agents flexibly contribute with their relative equipment and capabilities forming a symbiotic network solving multiple objectives simultaneously are highly desirable. Our proposed SMART-AGENTS platform will enable flexibility and modularity providing multi-objective solutions, demonstrated in two industrial domains: logistics (cycle-counting in warehouses) and agriculture (pest and disease identification in greenhouses). Aerial vehicles are limited in their computational power due to weight limitations but offer large mobility to provide access to otherwise unreachable places and an “eagle eye” to inform about terrain, obstacles by taking pictures and videos. Specialized autonomous agents carrying optical sensors will enable disease classification and product recognition improving green- and warehouse productivity. Newly developed micro-electromechanical systems (MEMS) sensor arrays will create 3D flow-based images of surroundings even in dark and hazy conditions contributing to the multi-sensor system, including cameras, wireless signatures and magnetic field information shared among the symbiotic fleet. Integration of mobile systems, such as smart phones, which are not explicitly controlled, will provide valuable information about human as well as equipment movement in the environment by generating data from relative positioning sensors, such as wireless and magnetic signatures. Newly developed algorithms will enable robust autonomous navigation and control of the fleet in dynamic environments incorporating the multi-sensor data generated by the variety of mobile actors. The proposed SMART-AGENTS platform will use real-time 5G communication and edge computing providing new organizational structures to cope with scalability and integration of multiple devices/agents. It will enable a symbiosis of the complementary CPSs using a combination of equipment yielding efficiency and versatility of operation.