Synthetic fibers, mainly polyethylene terephthalate (PET), polyamide (PA), polyacrylonitrile (PAN) and polypropylene (PP), are the most widely used polymers in the textile industry. These fibers surpass the production of natural fibers with a market share of 54.4%. The advantages of these fibers are their high modulus and strength, stiffness, stretch or elasticity, wrinkle and abrasion resistances, relatively low cost, convenient processing, tailorable performance and easy recycling. The downside to synthetic fibers use are reduced wearing comfort, build-up of electrostatic charge, the tendency to pill, difficulties in finishing, poor soil release properties and low dyeability. These disadvantages are largely associated with their hydrophobic nature. To render their surfaces hydrophilic, various physical, chemical and bulk modification methods are employed to mimic the advantageous properties of their natural counterparts. This review is focused on the application of recent methods for the modification of synthetic textiles using physical methods (corona discharge, plasma, laser, electron beam and neutron irradiations), chemical methods (ozone-gas treatment, supercritical carbon dioxide technique, vapor deposition, surface grafting, enzymatic modification, sol-gel technique, layer-by-layer deposition of nano-materials, micro-encapsulation method and treatment with different reagents) and bulk modification methods by blending polymers with different compounds in extrusion to absorb different colorants. Nowadays, the bulk and surface functionalization of synthetic fibers for various applications is considered as one of the best methods for modern textile finishing processes (Tomasino, 1992). This last stage of textile processing has employed new routes to demonstrate the great potential of nano-science and technology for this industry (Lewin, 2007). Combination of physical technologies and nano-science enhances the durability of textile materials against washing, ultraviolet radiation, friction, abrasion, tension and fading (Kirk–Othmer, 1998). European methods for application of new functional finishing materials must meet high ethical demands for environmental-friendly processing (Fourne, 1999). For this purpose the process of textile finishing is optimized by different researchers in new findings (Elices & Llorca, 2002). Application of inorganic and organic nano-particles have enhanced synthetic fibers attributes, such as softness, durability, breathability, water repellency, fire retardancy and antimicrobial properties (Franz, 2003; McIntyre, 2005; Xanthos, 2005). This review article gives an application overview of various physical and chemical methods of inorganic and organic structured material as potential modifying agents of textiles with emphasis on dyeability enhancements. The composition of synthetic fibers includes polypropylene (PP), polyethylene terephthalate (PET), polyamides (PA) or polyacrylonitrile (PAN). Synthetic fibers already hold a 54% market share in the fiber market. Of this market share, PET alone accounts for almost 50% of all fiber materials in 2008 (Gubitz & Cavaco-Paulo, 2008). Polypropylene, a major component for the nonwovens market accounts for 10% of the market share of both natural and synthetic fibers worldwide (INDA, 2008 and Aizenshtein, 2008). It is apparent that synthetic polymers have unique properties, such as high uniformity, mechanical strength and resistance to chemicals or abrasion. However, high hydrophobicity, the build-up of static charges, poor breathability, and resistant to finishing are undesirable properties of synthetic materials (Gubitz & Cavaco-Paulo, 2008). Synthetic textile fibers typically undergo a variety of pre-treatments before dyeing and printing is feasible. Compared to their cotton counterparts, fabrics made from synthetic fibers undergo mild scouring before dyeing. Nonetheless, these treatments still create undesirable process conditions wh
MULTIFILE
Abstract Background: The benefit of MR-only workflow compared to current CT-based workflow for prostate radiotherapy is reduction of systematic errors in the radiotherapy chain by 2–3 mm. Nowadays, MRI is used for target delineation while CT is needed for position verification. In MR-only workflows, MRI based synthetic CT (sCT) replaces CT. Intraprostatic fiducial markers (FMs) are used as a surrogate for the position of the prostate improving targeting. However, FMs are not visible on sCT. Therefore, a semi-automatic method for burning-in FMs on sCT was developed. Accuracy of MR-only workflow using semi-automatically burned-in FMs was assessed and compared to CT/MR workflow. Methods: Thirty-one prostate cancer patients receiving radiotherapy, underwent an additional MR sequence (mDIXON) to create an sCT for MR-only workflow simulation. Three sources of accuracy in the CT/MR- and MR-only workflow were investigated. To compare image registrations for target delineation, the inter-observer error (IOE) of FM-based CT-to-MR image registrations and soft-tissue-based MR-to-MR image registrations were determined on twenty patients. Secondly, the inter-observer variation of the resulting FM positions was determined on twenty patients. Thirdly, on 26 patients CBCTs were retrospectively registered on sCT with burned-in FMs and compared to CT-CBCT registrations. Results: Image registration for target delineation shows a three times smaller IOE for MR-only workflow compared to CT/MR workflow. All observers agreed in correctly identifying all FMs for 18 out of 20 patients (90%). The IOE in CC direction of the center of mass (COM) position of the markers was within the CT slice thickness (2.5 mm), the IOE in AP and RL direction were below 1.0 mm and 1.5 mm, respectively. Registrations for IGRT position verification in MR-only workflow compared to CT/MR workflow were equivalent in RL-, CC- and AP-direction, except for a significant difference for random error in rotation. Conclusions: MR-only workflow using sCT with burned-in FMs is an improvement compared to the current CT/ MR workflow, with a three times smaller inter observer error in CT-MR registration and comparable CBCT registration results between CT and sCT reference scans. Trial registry Medical Research Involving Human Subjects Act (WMO) does apply to this study and was approved by the Medical Ethics review Committee of the Academic Medical Center. Registration number: NL65414.018.18. Date of registration: 21–08-2018.
LINK
In Europe, green hydrogen and biogas/green gas are considered important renewable energy carriers, besides renewable electricity and heat. Still, incentives proceed slowly, and the feasibility of local green gas is questioned. A supply chain of decentralised green hydrogen production from locally generated electricity (PV or wind) and decentralised green gas production from locally collected biomass and biological power-to-methane technology was analysed and compared to a green hydrogen scenario. We developed a novel method for assessing local options. Meeting the heating demand of households was constrained by the current EU law (RED II) to reduce greenhouse gas (GHG) emissions by 80% relative to fossil (natural) gas. Levelised cost of energy (LCOE) analyses at 80% GHG emission savings indicate that locally produced green gas (LCOE = 24.0 €ct kWh−1) is more attractive for individual citizens than locally produced green hydrogen (LCOE = 43.5 €ct kWh−1). In case higher GHG emission savings are desired, both LCOEs go up. Data indicate an apparent mismatch between heat demand in winter and PV electricity generation in summer. Besides, at the current state of technology, local onshore wind turbines have less GHG emissions than PV panels. Wind turbines may therefore have advantages over PV fields despite the various concerns in society. Our study confirms that biomass availability in a dedicated region is a challenge.
DOCUMENT
The anterior cruciate ligament (ACL) is a strong rope-like tissue which connects the femur to the tibia in the knee joint. Its function is to provide structural stability to the knee while preventing unnatural forward movement of the tibia relative to the femur. Acute complete ACL ruptures during movements like knee hyperextension or sudden changes of direction (pivoting) damage two entities: the ligament itself and its nerve connections to the posterior tibial nerve (PTN). PTN innervation in the ACL is essential for: a) proprioception (e.g. perception of position and movement/acceleration experienced by the ligament), and b) stability of the knee joint. Upon ACL rupture, the orthopedic surgeon reconstructs the ACL with a graft from the hamstring, patellar or quadriceps tendon. After the surgery, the goal is to regain neuromuscular control and dynamic stabilization during rehabilitation as soon as possible for a quick return to sports and daily activities. However, surgeons are not able to reconstruct the nerve gap between the PTN and the grafted ligament due to the microscopic size of the innervation in the ACL. Not linking the PTN to the graft creates a disconnection between the knee joint and the spinal cord. To mitigate these disadvantages in ACL surgery, this study focuses on activating the growth of proprioception nerve endings using a ligament loaded with growth factors (neurotrophins). We hypothesize that neurotrophins will activate proprioceptive fibers of neurons close to the ACL. We describe graft fabrication steps and in vitro experiments to expand on the regeneration capacity of a commercially available ACL-like synthetic ligament called LARS. The results will bring the ACL regeneration field closer to having a graft that can aid patients in regaining mobility and stability during locomotion and running, confidence in the strength of the knee joint, and quick return to sports.
The textile and clothing sector belongs to the world’s biggest economic activities. Producing textiles is highly energy-, water- and chemical-intensive and consequently the textile industry has a strong impact on environment and is regarded as the second greatest polluter of clean water. The European textile industry has taken significant steps taken in developing sustainable manufacturing processes and materials for example in water treatment and the development of biobased and recycled fibres. However, the large amount of harmful and toxic chemicals necessary, especially the synthetic colourants, i.e. the pigments and dyes used to colour the textile fibres and fabrics remains a serious concern. The limited range of alternative natural colourants that is available often fail the desired intensity and light stability and also are not provided at the affordable cost . The industrial partners and the branch organisations Modint and Contactgroep Textiel are actively searching for sustainable alternatives and have approached Avans to assist in the development of the colourants which led to the project Beauti-Fully Biobased Fibres project proposal. The objective of the Beauti-Fully Biobased Fibres project is to develop sustainable, renewable colourants with improved light fastness and colour intensity for colouration of (biobased) man-made textile fibres Avans University of Applied Science, Zuyd University of Applied Sciences, Wageningen University & Research, Maastricht University and representatives from the textile industry will actively collaborate in the project. Specific approaches have been identified which build on knowledge developed by the knowledge partners in earlier projects. These will now be used for designing sustainable, renewable colourants with the improved quality aspects of light fastness and intensity as required in the textile industry. The selected approaches include refining natural extracts, encapsulation and novel chemical modification of nano-particle surfaces with chromophores.
In greenhouse horticulture harvesting is a major bottleneck. Using robots for automatic reaping can reduce human workload and increase efficiency. Currently, ‘rigid body’ robotic grippers are used for automated reaping of tomatoes, sweet peppers, etc. However, this kind of robotic grasping and manipulation technique cannot be used for harvesting soft fruit and vegetables as it will cause damage to the crop. Thus, a ‘soft gripper’ needs to be developed. Nature is a source of inspiration for temporary adhesion systems, as many species, e.g., frogs and snails, are able to grip a stem or leave, even upside down, with firm adhesion without leaving any damage. Furthermore, larger animals have paws that are made of highly deformable and soft material with adjustable grip size and place holders. Since many animals solved similar problems of adhesion, friction, contact surface and pinch force, we will use biomimetics for the design and realization of the soft gripper. With this interdisciplinary field of research we aim to model and develop functionality by mimicking biological forms and processes and translating them to the synthesis of materials, synthetic systems or machines. Preliminary interviews with tech companies showed that also in other fields such as manufacturing and medical instruments, adjustable soft and smart grippers will be a huge opportunity in automation, allowing the handling of fragile objects.