A literature review conducted as part of a research project named “Measuring Safety in Aviation – Developing Metrics for Safety Management Systems” revealed several challenges regarding the safety metrics used in aviation. One of the conclusions was that there is limited empirical evidence about the relationship between Safety Management System (SMS) processes and safety outcomes. In order to explore such a relationship, respective data from 7 European airlines was analyzed to explore whether there is a monotonic relation between safety outcome metrics and SMS processes, operational activity and demographic data widely used by the industry. Few, diverse, and occasionally contradictory associations were found, indicating that (1) there is a limited value of linear thinking followed by the industry, i.e., “the more you do with an SMS the higher the safety performance”, (2) the diversity in SMS implementation across companies renders the sole use of output metrics not sufficient for assessing the impact of SMS processes on safety levels, and (3) only flight hours seem as a valid denominator in safety performance indicators. At the next phase of the research project, we are going to explore what alternative metrics can reflect SMS/safety processes and safety performance in a more valid manner
DOCUMENT
Although reengineering is strategically advantageous fororganisations in order to keep functional and sustainable, safety must remain apriority and respective efforts need to be maintained. This paper suggeststhe combination of soft system methodology (SSM) and Pareto analysison the scope of safety management performance evaluation, and presents theresults of a survey, which was conducted in order to assess the effectiveness,efficacy and ethicality of the individual components of an organisation’s safetyprogram. The research employed quantitative and qualitative data and ensureda broad representation of functional managers and safety professionals, whocollectively hold the responsibility for planning, implementing and monitoringsafety practices. The results showed that SSM can support the assessment ofsafety management performance by revealing weaknesses of safety initiatives,and Pareto analysis can underwrite the prioritisation of the remedies required.The specific methodology might be adapted by any organisation that requires adeep evaluation of its safety management performance, seeks to uncover themechanisms that affect such performance, and, under limited resources, needsto focus on the most influential deficiencies.
DOCUMENT
As part of their SMS, aviation service providers are required to develop and maintain the means to verify the safety performance of their organisation and to validate the effectiveness of safety risk controls. Furthermore, service providers must verify the safety performance of their organisation with reference to the safety performance indicators and safety performance targets of the SMS in support of their organisation’s safety objectives. However, SMEs lack sufficient data to set appropriate safety alerts and targets, or to monitor their performance, and no other objective criteria currently exist to measure the safety of their operations. The Aviation Academy of the Amsterdam University of Applied Sciences therefore took the initiative to develop alternative safety performance metrics. Based on a review of the scientific literature and a survey of existing safety metrics, we proposed several alternative safety metrics. After a review by industry and academia, we developed two alternative metrics into tools to help aviation organisations verify the safety performance of their organisations.The AVAV-SMS tool measures three areas within an organisation’s Safety Management System:• Institutionalisation (design and implementation along with time and internal/external process dependencies).• Capability (the extent to which managers have the capability to implement the SMS).• Effectiveness (the extent to which the SMS deliverables add value to the daily tasks of employees).The tool is scalable to the size and complexity of the organisation, which also makes it useful for small and medium-sized enterprises (SMEs). The AVAS-SCP tool also measures three areas in the organisation’s safety culture prerequisites to foster a positive safety culture:• Organisational plans (whether the company has designed/documented each of the safety cultureprerequisites).• Implementation (the extent to which the prerequisites are realised by the managers/supervisors acrossvarious organisational levels).• Perception (the degree to which frontline employees perceive the effects of managers’ actions relatedto safety culture).We field-tested these tools, demonstrating that they have adequate sensitivity to capture gaps between Work-as-Imagined (WaI) and Work-as-Done (WaD) across organisations. Both tools are therefore useful to organisations that want to self-assess their SMS and safety culture prerequisite levels and proceed to comparisons among various functions and levels and/or over time. Our field testing and observations during the turn-around processes of a regional airline confirm that significant differences exist between WaI and WaD. Although these differences may not automatically be detrimental to safety, gaining insight into them is clearly necessary to manage safety. We conceptually developed safety metrics based on the effectiveness of risk controls. However, these could not be fully field-tested within the scope of this research project. We recommend a continuation of research in this direction. We also explored safety metrics based on the scarcity of resources and system complexity. Again, more research is required here to determine whether these provide viable solutions.
DOCUMENT
A literature review, which was conducted during the research project “Measuring Safety in Aviation – Developing Metrics for Safety Management Systems”, identified several problems and challenges regarding safety performance metrics in aviation. The findings from this review were used to create a framework for interviewing 13 companies in order to explore how safety performance is measured in the industry. The results from the surveys showed a wide variety of approaches for assessing the level of safety. The companies encounter and/or recognise problematic areas in practice when implementing their safety management. The findings from the literature review are partially confirmed and it seems that the current ways of measuring safety performance are not as straight forward as it might be assumed. Further research is recommended to explore alternative methods for measuring aviation safety performance.
DOCUMENT
AIOSAT - Autonomous Indoor & Outdoor Safety Tracking System
MULTIFILE
AIOSAT - Autonomous Indoor & Outdoor Safety Tracking System
MULTIFILE
A symbiotic relationship between human factors and safety scientists is needed to ensure the provision of holistic solutions for problems emerging in modern socio-technical systems. System Theoretic Accident Model and Processes (STAMP) tackles both interactions and individual failures of human and technological elements of systems. Human factors topics and indicative models, tools and methods were reviewed against the approach of STAMP. The results showed that STAMP engulfs many human factors subjects, is more descriptive than human factors models and tools, provides analytical power, and might be further improved by including more aspects of human factors. STAMP can serve in minimizing the gap between human factors and safety engineering sciences, which can collectively offer inclusive solutions to the industry.
DOCUMENT
Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this paper presents: (1) a set of safety requirements generated from the application of the Systems Theoretic Process Analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, and drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights.
DOCUMENT
Objectives: Current study explores the potential of the safety rating scale in order to determine the surplus value for evidence based practise. This study wants to contribute to this knowledge gape by exploring the safety scale by analysing the change between two safety ratings. First, the absolute change in safety is investigated. Secondly the study explores to what extent family background characteristics and case management characteristics determine the extent of change in perceived safety. Materials and Methods: The study analysed 105 Dutch child protection cases who had registration files with filled out LIRIK checklist, Action Plan and additional baseline safety and end safety measure as perceived by case managers. Results: On average perceived safety increased from an insufficient level to sufficient level. Significant regression coefficients with larger changes for primary school children (6 - 12 years) and lower changes for children within the ‘socio economic problems cluster’. The results reveal significant vulnerability for preschool children and families attending the socio-economic cluster due to limited improvement. Conclusion: According to this study the safety measure can be of value to outcome monitoring. The safety measure is a practical measure that reflects on the current state of safety within a family according to professionals and can be used on several occasions during case management. In addition, on aggregated level pre and post measures can be analysed for quality management purpose. Further exploration of this measure is needed. Publishers article: https://www.ecronicon.com/ecpe/ECPE-10-00873.php
DOCUMENT
The inefficiency of maintaining static and long-lasting safety zones in environments where actual risks are limited is likely to increase in the coming decades, as autonomous systems become more common and human workers fewer in numbers. Nevertheless, an uncompromising approach to safety remains paramount, requiring the introduction of novel methods that are simultaneously more flexible and capable of delivering the same level of protection against potentially hazardous situations. We present such a method to create dynamic safety zones, the boundaries of which can be redrawn in real-time, taking into account explicit positioning data when available and using conservative extrapolation from last known location when information is missing or unreliable. Simulation and statistical methods were used to investigate performance gains compared to static safety zones. The use of a more advanced probabilistic framework to further improve flexibility is also discussed, although its implementation would not offer the same level of protection and is currently not recommended.
MULTIFILE