Digitalization is the core component of future development in the 4.0 industrial era. It represents a powerful mechanism for enhancing the sustainable competitiveness of economies worldwide. Diverse triggering effects shape future digitalization trends. Thus, the main research goal in this study is to use sustainable competitiveness pillars (such as social, economic, environmental and energy) to evaluate international digitalization development. The proposed empirical model generates comprehensive knowledge of the sustainable competitiveness-digitalization nexus. For that purpose, a nonlinear regression has been applied on gathered annual data that consist of 33 European countries, ranging from 2010 to 2016. The dataset has been deployed using Bernoulli’s binominal distribution to derive training and testing samples and the entire analysis has been adjusted in that context. The empirical findings of artificial neural networks (ANN) suggest strong effects of the economic and energy use indicators on the digitalization progress. Nonlinear regression and ANN model summary report valuable results with a high degree of coefficient of determination (R2>0.9 for all models). Research findings state that the digitalization process is multidimensional and cannot be evaluated as an isolated phenomenon without incorporating other relevant factors that emerge in the environment. Indicators report the consumption of electrical energy in industry and households and GDP per capita to achieve the strongest effect.
MULTIFILE
Neoliberal discourse often conceptualizes nature in relation to its market utility and economic development. This article will address the role of metaphors in shaping neoliberal discourse in business education. The aim of this article is to reveal reasoning patterns about environmental problems and economic development in students of sustainable business minor. The case study described in this article involves business students at The Hague University in The Netherlands. This case study aimed to explore a shift in student understanding of environmental problems and economic development before and after the intervention. The results suggest that critical curriculum can inform students about the alternative conceptions as well as instruct them about potential solutions to the sustainability challenges. The article culminates with the argument that without goal-oriented education for sustainability; neoliberal education may not permit transcendence from unsustainable practices. https://doi.org/10.3390/su6117496 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Key takeaways from the project underscore the importance of fostering long-term collaborations between technical experts, communities, and institutional partners. By integrating technical innovation with human-centred design, the SUSTENANCE project has not only advanced renewable energy adoption but also established a framework for empowering communities to actively participate in sustainable energy transitions. Moving forward, the lessons learned, and solutions developed provide a solid foundation for addressing future challenges in energy system decarbonization and resilience.
MULTIFILE
Micro and macro algae are a rich source of lipids, proteins and carbohydrates, but also of secondary metabolites like phytosterols. Phytosterols have important health effects such as prevention of cardiovascular diseases. Global phytosterol market size was estimated at USD 709.7 million in 2019 and is expected to grow with a CAGR of 8.7% until 2027. Growing adoption of healthy lifestyle has bolstered demand for nutraceutical products. This is expected to be a major factor driving demand for phytosterols.Residues from algae are found in algae farming and processing, are found as beachings and are pruning residues from underwater Giant Kelp forests. Large amounts of brown seaweed beaches in the province of Zeeland and are discarded as waste. Pruning residues from Giant Kelp Forests harvests for the Namibian coast provide large amounts of biomass. ALGOL project considers all these biomass residues as raw material for added value creation.The ALGOL feasibility project will develop and evaluate green technologies for phytosterol extraction from algae biomass in a biocascading approach. Fucosterol is chosen because of its high added value, whereas lipids, protein and carbohydrates are lower in value and will hence be evaluated in follow-up projects. ALGOL will develop subcritical water, supercritical CO2 with modifiers and ethanol extraction technologies and compare these with conventional petroleum-based extractions and asses its technical, economic and environmental feasibility. Prototype nutraceutical/cosmeceutical products will be developed to demonstrate possible applications with fucosterol.A network of Dutch and African partners will supply micro and macro algae biomass, evaluate developed technologies and will prototype products with it, which are relevant to their own business interests. ALGOL project will create added value by taking a biocascading approach where first high-interest components are processed into high added value products as nutraceutical or cosmeceutical.
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Flying insects like dragonflies, flies, bumblebees are able to couple hovering ability with the ability for a quick transition to forward flight. Therefore, they inspire us to investigate the application of swarms of flapping-wing mini-drones in horticulture. The production and trading of agricultural/horticultural goods account for the 9% of the Dutch gross domestic product. A significant part of the horticultural products are grown in greenhouses whose extension is becoming larger year by year. Swarms of bio-inspired mini-drones can be used in applications such as monitoring and control: the analysis of the data collected enables the greenhouse growers to achieve the optimal conditions for the plants health and thus a high productivity. Moreover, the bio-inspired mini-drones can detect eventual pest onset at plant level that leads to a strong reduction of chemicals utilization and an improvement of the food quality. The realization of these mini-drones is a multidisciplinary challenge as it requires a cross-domain collaboration between biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. Moreover a co-creation based collaboration will be established with all the stakeholders involved. With this approach we can integrate technical and social-economic aspects and facilitate the adoption of this new technology that will make the Dutch horticulture industry more resilient and sustainable.